Mast 218 Sec A Final Exam December 2007

Professor:	Richard Hall
Instructions:	Please answer all 5 questions. Explain your working carefully. Calculators are permitted.

- 1. Consider the integral $f(x) = \int_{0}^{x} \frac{dt}{1+t^3}$
 - (a) Find a Taylor series about x = 0 for f(x).
 - (b) What is the interval of convergence of this Taylor series.
 - (c) Find a Taylor polynomial T(x) to approximate f(x) with error $< 10^{-6}$ for $0 \le x \le \frac{1}{2}$. Explain!
- 2. Consider the curve in \Re^3 given by $\mathbf{r}(t) = (t^2/2, \cos(t), \sin(t)), \quad t \in \Re$.
 - (a) Find the unit tangent vector $\mathbf{T}(t)$.
 - (b) Find the curvature $\kappa(t)$.
 - (c) For t = 0, find the triad of unit vectors, that is to say, the unit tangent vector **T**, the principal normal **N**, and the binormal **B**.
 - (d) Find the tangent line which touches the curve at t = 0.
- 3. Consider the surface $S: z = 9 (x^2 + 4y^2)$.
 - (a) Sketch the surface S, and describe precisely the level curve z = 0.
 - (b) Find the tangent plane to S at (x, y) = (2, 1).
 - (c) Find the directional derivative $D_{\mathbf{u}}f$ at (x, y) = (2, 1), where the direction vector \mathbf{u} is given by $\mathbf{u} = (3, -2)$.
- 4. Consider the function $W(x,y) = e^{st}(s+t+r^2)$, where r = x+y, s = 2y-x, and t = x-y.
 - (a) Find expressions for the partial derivatives $\partial W/\partial x$ and $\partial W/\partial y$.
 - (b) Find the tangent plane to the surface z = W(x, y) at (r, s, t) = (3, 0, 1)
 - (c) Use part (b) to estimate the numerical value of W(1.9, 1.1).
- 5. Consider the function z = f(s,t) = (1+s)(1+t)(s+t).
 - (a) Find the critical points of f(s,t) for $(s,t) \in \Re^2$.
 - (b) Classify the critical points as min, max, or saddle points.
 - (c) What is the minimum value of z?