Math 264 Secs A & B Final Exam December 2010

Professors:	Richard Hall & Dimiter Dryanov
Instructions:	Please answer all 5 questions which carry equal marks.
	Explain your working carefully.
	Calculators are permitted. [Lined booklets]

1. Consider the sine integral $S(x) = \int_{0}^{x} \frac{\sin(t)}{t} dt$.

- (a) Assume that the integrand $\sin(t)/t$ is continuous at t = 0, and sketch its graph.
- (b) Find a Taylor series about x = 0 for S(x).
- (c) What is the interval of convergence of this Taylor series.
- (d) Find a Taylor polynomial T(x) to approximate S(x) with error $< 10^{-6}$ for $0 \le x \le \frac{1}{2}$. Explain!
- 2. Consider the curve in \Re^3 given by $\mathbf{r}(t) = \langle \sin(t), t^2/2, \cos(t) \rangle, \quad t \in \Re.$
 - (a) Find the unit tangent vector $\mathbf{T}(t)$.
 - (b) Find the curvature $\kappa(t)$.
 - (c) For t = 0, find the triad of unit vectors, that is to say, the unit tangent vector **T**, the principal normal **N**, and the binormal **B**.
 - (d) Find the plane which is normal to the curve at $t = \pi/4$.
- 3. Consider the surface S: z = f(x, y), where $f(x, y) = 16 (9x^2 + 4y^2)$.
 - (a) Sketch the surface S, and describe precisely the level curve z = 7.
 - (b) Find the tangent plane to S at (x, y) = (1, 2).
 - (c) Find the directional derivative $D_{\mathbf{u}}f$ at (x,y) = (1,2), where the **u** is a unit vector in the direction $\langle 3, -4 \rangle$.
- 4.
- (a) If $z = xe^{y\cos(x)}$, where x = st, and $y = s^2 + t^2$, find $\partial z/\partial s$ and $\partial z/\partial t$.
- (b) If $x \tan(z) + e^x \sin(y) + z^2 xy = 10$, explain what is meant by $\partial z / \partial x$. Find expressions for $\partial z / \partial x$ and $\partial x / \partial y$.
- 5. Consider the function z = f(x, y), where $f(x, y) = 2x^2y 4x^2 12y^3 + 18y^2$.
 - (a) Find the critical points of f(x,y) for $(x,y) \in \Re^2$.
 - (b) Classify these critical points as loc min, loc max, or saddle points.
 - (c) Does f(x, y) have a global minimum value? Explain.