Math 264 Secs A & B Final Exam December 2011

Professors:	Richard Hall & Yujin Guo
Instructions:	Please answer all 5 questions which carry equal marks.
	Explain your working carefully.
	Calculators are permitted. [Lined booklets]

- 1. Consider the integral $J(x) = \int_{0}^{x} \frac{1 \cos(t)}{t^2} dt$.
 - (a) Assume that the integrand $f(t) = (1 \cos(t))/t^2$ is continuous at t = 0, and sketch the graph of f(t).
 - (b) Find a Taylor series about x = 0 for J(x).
 - (c) What is the interval of convergence of this Taylor series?
 - (d) Find a Taylor polynomial T(x) to approximate J(x) with error $< 10^{-5}$ for $0 \le x \le 1$. Explain!
- 2. Consider the curve in \Re^2 which has the polar equation

$$r(\theta) = \frac{5}{1 - \frac{1}{2}\sin(\theta)}, \quad \theta \in [0, 2\pi].$$

- (a) Find the largest and smallest $r(\theta)$, and the corresponding values of θ .
- (b) Sketch the curve.
- (c) Find the enclosed area.
- 3. Consider the surface $S: z = f(x, y) = x^2 y^2$.
 - (a) Sketch the level curve z = 16.
 - (b) Find the tangent plane to S at (x, y) = (1, 2).
 - (c) Find the directional derivative $D_{\mathbf{u}}f$ at (x, y) = (-2, 3), in the direction defined by $\mathbf{v} = \langle 3, -4 \rangle$.
- 4. Suppose $w = \frac{x+y}{x+z}$.
 - (a) If x = s + tr, y = t + sr, and z = r + st, find $\partial w/\partial s$ and $\partial w/\partial t$ at (s, t, r) = (1, 2, 3).
 - (b) If w = 7, find an expression for $\partial x / \partial y$ in terms of x, y, and z.
- 5. Consider the function $z = f(x, y) = x^3 + y^3 3x 12y + 20$.
 - (a) Find the critical points of f(x, y) for $(x, y) \in \Re^2$.
 - (b) Classify these critical points as loc min, loc max, or saddle points.
 - (c) Does f(x, y) have a global minimum value? Explain.