Math 264 Sec A Midterm Test 28th October 2010

Professor:	Richard Hall
Instructions:	Please answer all 3 questions which carry equal marks.
	Duration: 1 hour. Please explain your work clearly.

- 1. Consider the curve in \Re^3 given by $\mathbf{r}(t) = (t\cos(t), t\sin(t), t), t \ge 0.$
 - (a) Give a rough sketch of this curve. HINT: look at $x^2 + y^2$.
 - (b) Find the tangent line to the curve which touches the curve at $t = \pi/2$.
 - (c) Find the plane that the curve passes through orthogonally at $t = \pi/2$.
- 2. Consider the curve given in polar coordinates by $r(\theta) = 1 + \cos(3\theta), \ \theta \in [0, 2\pi].$
 - (a) Give a rough sketch of this curve.
 - (b) Find the area inside the curve given in (a).
- 3. Consider the function e(x) defined by

$$e(x) = \int_{0}^{x} e^{-t^2} dt.$$

- (a) Find a Taylor series T(x) about x = 0 for e(x).
- (b) What is the interval of convergence of T(x)?
- (c) Find a Taylor polynomial $T_n(x)$ to approximate e(x) with error less than 10^{-6} for $0 \le x \le \frac{1}{2}$, that is to say, find n.

Now use $T_n(x)$ to estimate $e(\frac{1}{2})$.

Solution Notes

- 1.
- (a) Following the hint, we see $x^2 + y^2 = z^2$. That is, the curve lies on a

circular cone with apex at the origin.

(b) A tangent vector at t is given by $\mathbf{r}'(t) = (\cos(t) - t\sin(t), \sin(t) + t\cos(t), 1)$. Thus the equation of the tangent line is

$$\boldsymbol{l}(t) = \boldsymbol{r}(\pi/2) + t\boldsymbol{r}'(\pi/2) = \mathbf{r}_o + t\mathbf{v},$$

where $\mathbf{r}_0 = (0, \pi/2, \pi/2)$ and $\mathbf{v} = (-\pi/2, 1, 1)$.

- (c) For the plane, \mathbf{r}_o is a point in the plane, and \mathbf{v} is a normal vector. Hence the equation to the required plane is $(\mathbf{r} \mathbf{r}_o) \cdot \mathbf{v} = 0$.
- (a) The curve is a rose with three petals: $\mathbf{r} = \mathbf{0}$ when $\theta = \pm \{\pi/3, \pi\}$.

(b) The area A is given by the integral

$$A = \frac{1}{2} \int_{0}^{2\pi} (1 + \cos(3\theta))^2 d\theta = \frac{3\pi}{2}.$$

3

 $\mathbf{2}$

- (a) We use the series $e^s = \sum_{k=0}^{\infty} \frac{s^k}{k!}$ with $s = -t^2$, and integrate $\int_0^x (\ldots) dt$, term-by-term, to obtain $e(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{k!(2k+1)} (-1)^k$.
- (b) The series for e(x), like that for e^x , converges for all $x \in \Re$.
- (c) Since the series is alternating, the error incurred in using $T_n(x)$ is less than the maximum absolute value of 'the next term'. We find by exploring that $(\frac{1}{2})^{11}/(5!11) \approx 3.7 \times 10^{-7}$. Hence, the Taylor polynomial $T_9(x)$ is satisfactory, and is given by

$$T_9(x) = x - \frac{x^3}{3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \frac{x^9}{4!9}.$$

We find $T_9(\frac{1}{2}) \approx 0.461281364$, whereas $e(\frac{1}{2}) \approx 0.461281006$.