Math 264 Sec A Midterm Test 27th October 2011

Professor:	Richard Hall
Instructions:	Please answer all 3 questions which carry equal marks.
	Duration: 1 hour. Please explain your work clearly.

- 1. Consider the curve in \Re^3 given by $\mathbf{r}(t) = (t^3 + 3t, t^2 + 1, 3t + 4), t \ge 0.$
 - (a) Find the general unit tangent vector $\mathbf{T}(t)$ and its value $\mathbf{T}(1)$.
 - (b) Find the tangent line to the curve which touches the curve at t = 1.
 - (c) Find the principal normal **N** and the binormal **B** at t = 1.

[HINT: find **B** first.]

- 2. Consider the curve given in polar coordinates by $r(\theta) = \cos(2\theta), \ \theta \in [0, 2\pi].$
 - (a) Give a rough sketch of this curve.
 - (b) Find the area inside the curve given in (a).
- 3. Consider the function J(x) defined by

$$J(x) = \int_{0}^{x} \frac{\sin(t^2)}{t^2} \, dt.$$

- (a) Find a Taylor series T(x) about x = 0 for J(x).
- (b) What is the interval of convergence of T(x)?
- (c) Find a Taylor polynomial $T_n(x)$ to approximate J(x) with error less than 10^{-6} for $0 \le x \le 1$.
- (d) Now use $T_n(x)$ to estimate J(0.9).

Solution Notes

- 1.
- (a) We have $\mathbf{r}(t) = (t^3 + 3t, t^2 + 1, 3t + 4)$ and

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{(3(t^2+1), 2t, 3)}{[9t^4+22t^2+18]^{\frac{1}{2}}} \to \mathbf{T}(1) = (6, 2, 3)/7.$$

(b) A tangent vector at t = 1 is given by $\mathbf{r}'(t) = (6, 2, 3)$. Thus the equation of the tangent line is

$$\boldsymbol{l}(t) = (4, 2, 7) + t(6, 2, 3).$$

- (c) $\mathbf{B}(1) = \mathbf{r}'(1) \times \mathbf{r}''(1)/\|\mathbf{r}'(1) \times \mathbf{r}''(1)\| = (-1,3,0)/\sqrt{10}$. Meanwhile $\mathbf{N}(1) = \mathbf{B}(1) \times \mathbf{T}(1) = (9,3,-20)/(7\sqrt{10})$. Note that $\mathbf{N}(1) = \mathbf{T}'(1)/\|\mathbf{T}'(1)\|$ gives the same result, but the calculation takes longer.
- 2
- (a) The curve is a rose with four petals: r = 0 when $\theta =$

 $\{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}.$

(b) The area A is given by the integral

$$A = \frac{1}{2} \int_{0}^{2\pi} \cos^{2}(2\theta) \, d\theta = \frac{\pi}{2}.$$

- 3
- (a) We use the series $\sin(s) = \sum_{k=0}^{\infty} s^{2k+1} (-1)^k / (2k+1)!$ with $s = t^2$, and integrate $\int_0^x (\ldots) dt$, term-by-term, to obtain $J(x) = \sum_{k=0}^{\infty} \frac{x^{4k+1}}{(2k+1)!(4k+1)} (-1)^k.$
- (b) The series for J(x), like that for $\sin(x)$, converges for all $x \in \Re$.
- (c) Since the series is alternating, the error incurred in using $T_n(x)$ is less than the maximum absolute value of 'the next term'. We find by exploring (for x = 1) that $1/(7!11) \approx 1.62 \times 10^{-7}$. Hence, the following Taylor polynomial is satisfactory:

$$T(x) = x - \frac{x^5}{3!5} + \frac{x^9}{5!9} - \frac{x^{13}}{7!13}$$

We find $T(0.9) \approx 0.8806718431$, whereas $J(0.9) \approx 0.8806718701$.