Math 264 Sec A Midterm Test 27 th October 2011

- 1. Consider the curve in \Re^3 given by $r(t) = (t^3 + 3t, t^2 + 1, 3t + 4)$, $t \ge 0$.
	- (a) Find the general unit tangent vector $\mathbf{T}(t)$ and its value $\mathbf{T}(1)$.
	- (b) Find the tangent line to the curve which touches the curve at $t = 1$.
	- (c) Find the principal normal N and the binormal B at $t = 1$.

[HINT: find B first.]

- 2. Consider the curve given in polar coordinates by $r(\theta) = \cos(2\theta), \ \theta \in [0, 2\pi]$.
	- (a) Give a rough sketch of this curve.
	- (b) Find the area inside the curve given in (a).
- 3. Consider the function $J(x)$ defined by

$$
J(x) = \int_{0}^{x} \frac{\sin(t^2)}{t^2} dt.
$$

- (a) Find a Taylor series $T(x)$ about $x = 0$ for $J(x)$.
- (b) What is the interval of convergence of $T(x)$?
- (c) Find a Taylor polynomial $T_n(x)$ to approximate $J(x)$ with error less than 10^{-6} for $0 \le x \le 1$.
- (d) Now use $T_n(x)$ to estimate $J(0.9)$.

Solution Notes

- 1.
- (a) We have $r(t) = (t^3 + 3t, t^2 + 1, 3t + 4)$ and

$$
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{(3(t^2+1), 2t, 3)}{[9t^4 + 22t^2 + 18]^{\frac{1}{2}}} \rightarrow \mathbf{T}(1) = (6, 2, 3)/7.
$$

(b) A tangent vector at $t = 1$ is given by $r'(t) = (6, 2, 3)$. Thus the equation of the tangent line is

$$
l(t) = (4, 2, 7) + t(6, 2, 3).
$$

- (c) $\mathbf{B}(1) = \mathbf{r}'(1) \times \mathbf{r}''(1)/||\mathbf{r}'(1) \times \mathbf{r}''(1)|| = (-1, 3, 0)/\sqrt{10}$. Meanwhile $N(1) = B(1) \times T(1) = (9, 3, -20)/(7\sqrt{10})$. Note that $\mathbf{N}(1) = \mathbf{T}'(1)/\|\mathbf{T}'(1)\|$ gives the same result, but the calculation takes longer.
- 2
- (a) The curve is a rose with four petals: $r = 0$ when $\theta =$

 $\{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}.$

(b) The area A is given by the integral

$$
A = \frac{1}{2} \int\limits_{0}^{2\pi} \cos^2(2\theta) d\theta = \frac{\pi}{2}.
$$

3

- (a) We use the series $\sin(s) = \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} s^{2k+1}(-1)^k/(2k+1)!$ with $s = t^2$, and integrate $\int_0^x (\ldots) dt$, term-by-term, to obtain $J(x) = \sum_{k=0}^{\infty}$ $\frac{x^{4k+1}}{(2k+1)!(4k+1)}(-1)^k.$
- (b) The series for $J(x)$, like that for $sin(x)$, converges for all $x \in \Re$.
- (c) Since the series is alternating, the error incurred in using $T_n(x)$ is less than the maximum absolute value of 'the next term'. We find by exploring (for $x = 1$) that $1/(7!11) \approx 1.62 \times 10^{-7}$. Hence, the following Taylor polynomial is satisfactory:

$$
T(x) = x - \frac{x^5}{3!5} + \frac{x^9}{5!9} - \frac{x^{13}}{7!13}.
$$

We find $T(0.9) \approx 0.8806718431$, whereas $J(0.9) \approx 0.8806718701$.