Math 264 Sample Midterm Test

Professor:	Richard Hall
Instructions:	Please answer all 4 questions which carry equal marks.
	Explain your work clearly.

1. Consider the curve in $\,\Re^3\,$ given by $\,{\pmb r}(t)=(a\cos(t),a\sin(t),bt)\,,\,\,0\le t\le 4\pi,$

where a > 0 and b > 0.

- (a) Give a rough sketch of this curve.
- (b) If a = 2 and b = 3, find the arc length of the curve for $t \in [0, 4\pi]$.
- 2. Consider the curve given in polar coordinates by $r(\theta) = 1 \cos(\theta), \theta \in [0, 2\pi]$.
 - (a) Give a rough sketch of this curve.
 - (b) Find the area inside the curve given in (a) and outside the curve r = 1.
- 3. Consider the curve in \Re^3 given by $\mathbf{r}(t) = (t, t^2, t^3), t \ge 0$.
 - (a) Give a rough sketch of this curve.

(b) Find the plane that is orthogonal to the curve at t = 1.

- 4. Consider the integral I(x) given by $I(x) = \int_{0}^{x} \sin(t^{2})dt$, that is to say, $I(x) = \int \sin(x^{2})dx$, and I(0) = 0.
 - (a) Find a Taylor series for the integral I(x)
 - (b) Now find a polynomial T(x) to approximate I(x) with error less than 10^{-7} for $0 \le x \le \frac{1}{2}$.

Solution Notes

- 1.
- (a) The curve is a helix of radius a revolving about the z-axis. There are two complete turns and z rises by $4\pi b$ units as t advances from 0 to 4π .
- (b) Arc length $L = \int_0^{4\pi} |\mathbf{r}'(t)| dt$. Meanwhile $|\mathbf{r}'(t)| = (a^2 + b^2)^{\frac{1}{2}}$. Thus we have $L = (a^2 + b^2)^{\frac{1}{2}} 4\pi = 4\sqrt{13}\pi$
- $\mathbf{2}$
- (a) The curve is a heart-shaped figure (cardoid) with axis the x-axis and tip at (-2, 0).
- (b) The cardoid intersects the circle r = 1 where $cos(\theta)$ vanishes, that is to

say at $\theta = \pi/2$ and $\theta = 3\pi/2$. area is given by

Thus the required

$$A = \frac{1}{2} \int_{\pi/2}^{3\pi/2} \left[r^2(\theta) - 1 \right] d\theta = 2 + \pi/4.$$

-	•	
۰.	,	
	٦	
۲	,	

- (a) The curve advances monotonically and (for t > 1) 'faster' in y than x and faster in z than y.
- (b) The tangent line is along $r'(1) = (1,2,3) = \mathbf{n}$ which is a normal to the plane. Meanwhile r(1) = (1, 1, 1) = p is a point in the plane. Hence the equation of the plane is $(\mathbf{r} - \mathbf{p}) \cdot \mathbf{n} = 0$, that is to say (x-1) + 2(y-1) + 3(z-1) = 0.

- (a) Use the well-known (*) series for $\sin(s)$, set $s = t^2$, and integrate (b) For $0 \le x \le \frac{1}{2}$, $T(x) = x^3/3 - x^7/42 + x^{11}/1320$ with error ('next term') less than 10^{-7} .
- (*) Mnemonic: the series for $\sin(s)$ is the odd part of the series for e^s , with alternating signs. Thus $\sin(s) = \sum_{n=0}^{\infty} \frac{s^{2n+1}}{(2n+1)!} (-1)^n$.

^{4.}