
page 1 of 2

Computational Applied Mathematics: Problems 1

Professor: Richard Hall

Instructions: Please explain your solutions carefully.

Due Date: 13 February 2008

Consider the Sturm-Liouville problem given by

Hψ(x) = −ψ′′(x) + |x|ψ(x) = Eψ(x), (1)

where the eigenvalues En > 0 are to be determined so that ψ ∈ L2(<). You may assume if neces-

sary that the bounded domain ψ ∈ L2[−L,L] with L = 10 is a good approximation: this squeeze

constraint pushes the eigenvalues higher. One can show that the exact eigenfunctions have multi-

plicty one and are alternately even or odd functions of x . We have E0 < E1 < E2 . . . . The lowest

eigenvalue E0 is the bottom of the spectrum of the operator H , and the corresponding eigen-

function ψ0(x) is called the ground state. The spectrum of H can be characterized variationally.

For the ground state, this means that for a suitable smooth ‘trial function’ φ(x) , the ground-state

energy is bounded above by the Rayleigh quotient, thus E0 ≤ E = (φ,Hφ)/(φ, φ). If we assume

that φ is symmetric, and we integrate by parts, we obtain

E0 ≤ E =

∞∫
0

[
(φ′(x))2 + x(φ(x))2)

]
dx

∞∫
0

φ2(x)dx
. (2)

We can also express this by

E0 ≤ E = (φ,Hφ) =

∞∫
−∞

[
(φ′(x))2 + V (x)(φ(x))2)

]
dx with

∞∫
−∞

φ2(x)dx = 1, V (x) = |x|. (3)

In this second form, a multiplicative constant is introduced into φ so that φ2 becomes a probability

density on <. Some optimization is possible if φ , and therefore E , depend on parameters {a} .

(1.1) Suppose the trial function has the form φ(x; a) = exp(− 1
2ax

2), where a is a positive parameter.

Find E(a) analytically and optimize this energy function with respect to a to find the best

upper estimate E(â) obtainable with this 1-parameter family of Gaussian functions.

(1.2) Repeat the exercise (1.1) by doing the integrations and the optimization with respect to a

numerically. It is very useful to explore the numerical approach by first looking at a problem

whose solution is known.
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(1.3) Now refine the upper estimate for E0 by exploring the three-parameter trial function family

given by

φ(x; a, b, c) = e−
1
2 ax2

(1 + bx2 + cx4), a > 0.

Note that procedural simplifications can be obtained by first changing variables to t =
√
ax.

Some careful thought is advised before a rush into computing. If the results are not eventually

better (lower) than those of (1.1), then something is wrong, or incomplete. The integrations

remove x, and we are left with dependences on the parameters; managing all this nicely is the

point of the exercise. [After the integrations, the task could also be re-formulated as a matrix

eigenvalue problem; in this alternative picture (based on (2))one speaks of ‘looking at’ H in a

finite-dimensional Hilbert space; but this is not asked for here.]

(1.4) Now solve the eigenproblem by integrating the differential equation numerically (for example,

buy using Runge-Kutta iterations). E is unknown initially, so we use a ‘shooting method’ to

search. That is to say, convert to a finite boundary (say, L = 10 ), pick an E , and then start

the integration from x = 0 and count the number ν of nodes as x increases to L (don’t count

a zero at 0 ). Suppose νg is the number of nodes sought (the node goal). If we reach L and

ν < νg, then E is too small; if ν ≥ νg, E is too large (or possibly exactly right if the last zero

is at L ). By repetition the eigenvalue can be found to high accuracy. For even states, start

with {ψ(0) = 1, ψ′(0) = 0} and set n = 2νg, and for odd states use {ψ(0) = 0, ψ′(0) = 1}

and n = 2νg + 1. Find in this way the first four eigenvalues and eigenfunctions. A very nice

presentation of results is a single graph showing the potential |x| on [−L,L] and the four

eigenfunctions {ψi} placed on abscissae at heights {Ei}, i = 0, 1, 2, 3.

Notes:

(i) The convenient even-odd analysis is not valid if the original ‘potential’ |x| is replaced by

a function such as V (x) = x4 − x that is not even; in this more-general case, we should

have to think again.

(ii) When we approach a problem numerically, we often end up solving an altogether new

problem. With numerical integration, the results usually depend on the mesh or step size.

For the present problem, if the Runge-Kutta iterations with step size h have global error

of order ∼ h4, say, then it may be reasonable to presume a model for E(h) of the form

E(h) ∼ A + Bh4. By considering steps of sizes h and h/2, one can then extrapolate to

find A , the best estimate for E from this data. What is the extrapolation formula in this

case? I usually assume a more general model E(h) = A + Bhq, and, by using three h

values, I find the triple {A,B, q} ; I need A and am always curious concerning q. I am

not sure how best to do these extrapolations with Maple’s dsolve since we don’t seem to

have access to h ; it is not essential for the assignment to resolve these questions.


