Professor:	Richard Hall
Instructions:	Please explain your solutions carefully.
Due Date:	5 March 2008

Computational Applied Mathematics: Problems 2

- (1.1) Write Maple code to generate (pseudo) random numbers Y on [0, a] with density $\rho(y) = cy^2$, where c is a normalization constant. In particular, write a procedure $\operatorname{sqd}(n, a)$ that generates an array of n y-values. Use this array to plot an approximate graph of $\rho(y)$ on a mesh on [0, a]of m intervals: the graph would join the 'histogram' heights at the m half points $\{(j - \frac{1}{2})h\}$, where h = a/m, and j = 1, 2, ..., n. Plot the graph for the values a = 4, m = 10, n = 10000.
- (1.2) Derive the 3σ -rule and find the probable error, if X is a random variable with distribution $N(\mu, \sigma)$. That is to say, find (i) the probability that x lies within 3σ of μ , and (ii) the number b such that the probability that x is within $b\sigma$ of μ is $\frac{1}{2}$.
- (1.3) Study the integral $\int_0^1 \cosh(x) dx$. This can, of course, be computed exactly; but we are going to try it by Monte-Carlo methods.
 - (a) First estimate the integral by the procedure mu(n) which uses uniform sampling. Find the results m(10) and m(1000) and the corresponding approximate σ and the 3σ -error.
 - (b) Now repeat the exercise using significance sampling and a procedure mg(n). HINT: Consider the integral of $f(x) = \cosh(x) 1$, and random sampling with the density $\rho(x) = 3x^2$ on [0, 1]. Why is this density suggested?
- (1.4) Write a Maple procedure binormal(n) that uses the Box-Muller transformation to generate an array of n binormal pairs [x, y], each approximately of type N(0, 1). Plot a histogram of say X with 20 intervals on [-4, 4] using n = 10000 points (similar to problem (1.1)). Compare this graph to a suitably normalized graph of the corresponding analytical density $\rho(x)$.
- (1.5) A binormal density $N(0,1) \times N(0,1)$ is centred at the origin. A square of side 2a is placed in the plane with its centre a distance r from the origin and its side rotated to an angle θ to the x-axis. Suppose the probability mass in the square is given by $m(a,r,\theta)$. Use a Monte-Carlo method to study the graph of m with respect to θ , for fixed a and r. In particular, plot a graph of $m(1,2,\theta)$ for $\theta \in [0,\pi/2]$. The analytic study of this curious problem of a square bucket placed under a Gaussian fountain may be found in the paper: [22] Inequalites for the probability content of a rotated square and related convolutions, Ann. Prob. 8, 802-813 (1980), by Richard L. Hall, M. Kanter, and M. Perlman.