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Abstract

We consider a single particle which is bound by a central potential and obeys

the Dirac equation. We compare two cases in which the masses are the same but

Va < Vb, where V is the time-component of a vector potential. We prove generally

that for each discrete eigenvalue E whose corresponding (large and small) radial wave

functions have no nodes, it necessarily follows that Ea < Eb. As an illustration, this

general relativistic comparison theorem is applied to approximate the Dirac spectrum

generated by a screened-Coulomb potential.
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1. Introduction

The comparison theorem of non-relativistic quantum mechanics states that

Va < Vb ⇒ Ea < Eb, (1.1)

where V is an attractive potential which supports discrete eigenvalues. This theorem

is usually proven for every eigenvalue by an application of the variational (min-max)

characterization [1, 2] of the discrete part of the Schrödinger spectrum. Such a proof

is unavailable for the corresponding Dirac problem since the Dirac Hamiltonian is not

bounded below, and the spectrum cannot be defined variationally. An early and very

detailed analysis of the Dirac spectrum for central potentials has been given by Rose

and Newton [3]. The impossibility of a general proof of a comparison theorem for the

Dirac problem has led to the commonly-held belief that no such theorem at all could

be established. In this paper we prove that for attractive central potentials, (1.1) is

valid for each discrete Dirac eigenvalue whose wave functions have no nodes, that is

to say, for the bottom of each angular-momentum subspace.

The possibility of a theorem of this kind was suggested by an attempt to prove

a comparison theorem for the non-relativistic problem without the use of min-max.

If we write the two Schrödinger comparison Hamiltonians in dimensionless form as

Ha = −∆ +Va and Hb = −∆ +Vb and we write down the corresponding eigen equations

in one dimension we get:

−ψ′′(x) + Va(x)ψ(x) = Eaψ(x), (1.2)

and

−φ′′(x) + Vb(x)φ(x) = Ebφ(x). (1.3)

We now assume that the wave functions are normalized, we form the difference

(1.2) φ - (1.3) ψ, and integrate it over all space to obtain:

∫ ∞
−∞

(Va(x)− Vb(x))ψ(x)φ(x)dx = (Ea − Eb)
∫ ∞
−∞

ψ(x)φ(x)dx. (1.4)

This equation immediately establishes (1.1), provided the wave functions have no

nodes. If the potentials are symmetric, and we consider the lowest odd state, then the

wave functions vanish at the origin and we obtain (1.4), with integrations on [0,∞) ;

and this again proves (1.1). Thus the theorem is established also for the bottom

of the odd-parity space. Consequently this result extends to the corresponding radial
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problem in N > 1 dimensions, provided that we consider nodeless states at the bottom

of each angular-momentum subspace.

In Section (2) we apply similar reasoning to the Dirac problem and we are able to

prove that the comparison theorem (1.1) is valid for every discrete eigenvalue which is

at the bottom of an angular-momentum subspace. In Section (3) the new relativistic

comparison theorem is applied to approximate the spectrum produced by a screened-

Coulomb potential: a set of soluble comparison potentials are generated by use of the

‘potential envelope method’.

2. The relativistic comparison theorem

We consider a single Dirac particle moving in a central vector potential with

time component V (r), and a fixed mass m. Since we are not able to accommodate

variations in the scalar potential in the comparison theory presented here we do not

allow for it at this stage; a more detailed remark will be made later concerning this

question. We adopt a notation similar to that of Messiah [4] and Rose [5]. We let ψ1

and ψ2 be the ‘large and small’ radial wave functions used to construct the Dirac

spinor corresponding to a total angular momentum of j. We employ the variables

τ = ±1, and k = j + 1
2 , so that the parity P of an energy eigenstate is given by

P = (−1)j+
τ
2 = ±. If the eigenvalues are labelled EPnj , where n = 1, 2, 3, . . . , enumerates

the distinct radial states, then the degeneracy of this energy symbol is exactly 2j + 1.

In this notation the principal quantum number for the Coulomb problem becomes

ν = n + k − 1
2 (1 − τ). Meanwhile, the boundary conditions and normalization we have

adopted for the radial functions are:

ψ1(0) = ψ2(0) = 0,
∫ ∞

0

(ψ2
1(r) + ψ2

2(r))dr = 1. (2.1)

We now consider two different potentials Va and Vb and we associate with them

the corresponding pairs of radial functions {ψ1, ψ2} and {φ1, φ2} and we obtain a pair

of coupled radial equations [5] for each problem:

ψ′2 −
τk

r
ψ2 = (m+ Va − Ea)ψ1 (2.2)

ψ′1 +
τk

r
ψ1 = (m− Va + Ea)ψ2 (2.3)

φ′2 −
τk

r
φ2 = (m+ Vb − Eb)φ1 (2.4)
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φ′1 +
τk

r
φ1 = (m− Vb + Eb)φ2. (2.5)

We consider now the special combination of these four equations which is given by

multiplying each equation by a wave function and summing, according the the pre-

scription

(2.2)φ1 + (2.5)ψ2 − (2.3)φ2 − (2.4)ψ1,

and we find:

(φ1ψ2)′ − (ψ1φ2)′ = (φ1ψ2 + ψ1φ2)[Va − Vb − (Ea − Eb)]. (2.6)

By integrating (2.6) and using the boundary conditions we obtain:

∫ ∞
0

(φ1ψ2 + ψ1φ2)[Va − Vb]dr = [Ea − Eb]
∫ ∞

0

(φ1ψ2 + ψ1φ2)dr. (2.7)

If the wave functions have no nodes, the factors involving them on each side of (2.7)

have the same sign: hence, under these conditions, this equation establishes the com-

parison theorem (1.1) for the Dirac problem. It should perhaps be mentioned here

that in order to derive the comparison result from (2.7), it is necessary to assume

that the potentials and the eigenvalues are both real: if, for example, potential pa-

rameters stray into regions where a corresponding eigenvalue becomes complex, then

(2.7) would no longer imply (1.1), since the complex numbers are not well ordered.

We now turn to the corresponding problem for scalar potentials. Let us suppose

that the vector potentials are the same and that the masses are given respectively

by ma(r) and mb(r). The same type of reasoning as we have used above leads to the

expression:

∫ ∞
0

(φ1ψ1 − φ2ψ2)[ma −mb]dr = [Ea − Eb]
∫ ∞

0

(φ1ψ1 + φ2ψ2)dr. (2.8)

It is clear that we can only draw the conclusion Ea < Eb from (2.8) under incon-

venient assumptions, such as dominance of the large radial component. In the general

case, even for node-free wave functions, it seems that no simple comparison theorem

for scalar potentials can be derived in this way; indeed, Greiner [14] has exhibited an

example (in one dimension) in which the dependence of the energy on coupling to a
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scalar potential is not monotone. In the non-relativistic limit, with constant masses,

the well-known Hellmann-Feynman result [6-9] follows, as we would expect.

3. Energy upper bounds for a screened-Coulomb potential

In order to study an application of the comparison theorem we need two potentials

V (t)(r) and V (r) which are ordered, say

V (t)(r) ≥ V (r). (3.1)

We choose for V (r) the screened-Coulomb potential suitable for large atoms which

has been studied by Mehta and Patil [10] and is given by

V (r) = −
(v
r

)
[1− rλ(1− 1/Z)/(1 + λr)], (3.2)

where

v = αZ and λ = 0.98αZ
1
3 . (3.3)

For the comparison potential V (t)(r) we generate not one, but a set of ‘tangential’

potentials by using the method of ‘potential envelopes’ [11, 12]. The apparatus of this

theory is not essential to the illustration so long as (3.1) is valid. We now give a short

self-contained derivation of this set of comparison potentials, and we also provide an

independent verification of (3.1).

The envelope method requires a soluble base potential which we take to be the

pure Hydrogenic potential −u/r = uh(r). This potential leads to a discrete spectrum

which, in units of mc2 and for u < 1, is given exactly [5] by

DP
nj(u) = D(u) =

{
1 + u2

[
n− 1

2
(1− τ) + (k2 − u2)

1
2

]−2
}− 1

2

, (3.4)

where k = j+ 1
2 , and n = 1, 2, 3, . . . , counts the discrete eigenvalues for each given {τ, j}

pair.

If we write the potential (3.2) as the transformation V (r) = g(h(r)) of the pure

Coulomb potential h(r) = −1/r, then we have

g(h) = vh+ vλ(1− 1/Z)
[
1 +

λ

h− λ

]
. (3.5)

It follows immediately that g′(h) > 0 and g′′(h) < 0; that is to say, g is monotone

increasing and concave. As a consequence of this, every tangent line to g(h) is a

shifted Coulomb potential of the form
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V (t)(r) = A(t) +B(t)h(r) = {g(h(t))− h(t)g′(h(t))}+ g′(h(t))h(r), (3.6)

where r = t is the point of contact with V. We now know that the potential inequality

(3.1) is valid because the concavity of g implies that it lies below its tangents. For

the present example we can also show, by a direct calculation, that the potential

difference is given by the following clearly positive expression:

V (t)(r)− V (r) =
v(1− 1/Z)λ2(r − t)2

r(1 + λr)(1 + λt)2
≥ 0. (3.7)

The eigenvalues corresponding to the shifted Coulomb potential (3.6) can be found

exactly and are given immediately in terms of the known pure Hydrogenic eigenvalues

D(u) by

E(t) = A(t) +D(B(t)) ≥ E. (3.8)

The inequality in (3.8) follows from the potential inequality (3.1) and our comparison

theorem, provided the large and small radial functions are node free. For potentials

that are Coulombic near r = 0, the argument of Rose [5] demonstrates that the

number of nodes is the same for ψ1 and ψ2 only if τ = −1. Hence we must restrict our

considerations to the eigenvalues at the bottom of each angular-momentum subspace,

that is to say, to those with τ = −1, n = 1. All it remains to do is to minimize E(t)

with respect to t > 0 in order to obtain the best envelope approximation for each

eigenvalue. By a simple change of variable t → u = g′(h(t)), the best upper energy

bound may be written in the much more compact form:

EU = min
u∈(0,1)

{D(u)− uD′(u) + V (−1/D′(u))} . (3.9)

The ‘principal quantum number’ ν of the Coulomb problem may be defined

generally by the expression ν = n + k − 1
2 (1 − τ). Thus, for the states whose energies

obey the comparison inequality, we have ν = k = j+ 1
2 , P = (−1)k−1, and ` = j− 1

2 , where

` is the orbital angular-momentum quantum number in the first two components of

the Dirac spinor. The spectroscopic designation is then ν`j , where ` = {0, 1, 2, . . .} ∼

{s, p, d, . . .} In Table (1) we exhibit some upper bounds EU found by Eq.(3.9), along

with corresponding accurate approximations E found numerically.
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4. Conclusion

A comparison theorem is a very useful general tool because it allows us to pre-

dict spectral ordering without actually having to solve the eigenvalue problems. In

the relativistic case we are restricted to the bottoms of the angular-momentum sub-

spaces. Perhaps this limitation can be weakened in future. Computations made with

the screened-Coulomb potential have not revealed any counter example to the con-

jecture that (1.1) is generally true, for all the discrete eigenvalues. Since the energy

functions D(u) for the Hydrogenic problem are monotone [12] in the coupling param-

eter u, and the corresponding functions E(Vo) for the square well, studied by Pieper

and Greiner [13, 14], are monotone, a counter example is certainly not immediately

available. On the other hand, it is unlikely that a simple extension could be made to

the proof given here so that it would apply also to states which have nodes, since this

is not possible in the more regular Schrödinger case. Further progress will probably

have to await some kind of non-standard extension of min-max theory rich enough to

accommodate the unbounded Dirac energy operator.

As an illustration, we have shown that the new relativistic comparison theorem

allows us to derive energy bounds such as (3.9). Formulas like this have the advantage

that they describe approximately how the discrete spectrum depends on all of the

potential parameters. This quasi-analytical information is complementary to purely

numerical calculations.
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Table 1 Upper bounds EUj by the envelope method, and accurate numerical values

Ej , for the bottoms of the first two angular momentum subspaces labelled by τ = −1,

and j = 1
2 and 3

2 . The spectral descriptions of these two eigenvalues are respectively

1s 1
2

and 2p 3
2
.

Z EU1
2

E 1
2

EU3
2

E 3
2

20 -4.2571 -4.3157 -0.48522 -0.53361

30 -10.2099 -10.2960 -1.3811 -1.4659

40 -18.9615 -19.0732 -2.8232 -2.9448

50 -30.7186 -30.8543 -4.8486 -5.0070

60 -45.7601 -45.9189 -7.4879 -7.6825

70 -64.4734 -64.6545 -10.7692 -10.9997

80 -87.4118 -87.6148 -14.7216 -14.9877


