Math 366 & 601J Sec AA Midterm-Test Solution Notes November 2014

Professor:	Richard Hall
Instructions:	Please answer all 5 questions which carry equal marks.
	Duration: 1 hour. Please explain your work clearly.

1. Consider the polynomial $p(z) = z^4 + 5z^2 - 50$, where $z \in C$. Now suppose that z is restricted to the subset B of C, where |z| = 3. Describe B and show that for $z \in B$,

$$\left|\frac{1}{z^4 + 5z^2 - 50}\right| \le \frac{1}{4}.$$

 $\begin{aligned} |p(z)| &= |(z^2 - 5)(z^2 + 10)| = |z^2 - 5| |z^2 + 10| \ge ||z|^2 - 5| ||z|^2 - 10| = 4 \times 1. \\ \text{Since } |z| &= 3 \text{ on } B \text{, we conclude } 1/|p(z)| \le 1/4. \end{aligned}$

- 2. Determine whether or not the following functions are analytic in suitable domains. When possible, find the derivative.
 - (a) $f(z) = e^x e^{-iy}$
 - (b) $g(z) = e^y e^{-ix}$.

(a) $f(z) = e^x(\cos y - i \sin y) = e^{\overline{z}}$. But \overline{z} is nowhere differentiable.

Thus f(z) likewise is nowhere differentiable. [or use CR].

(b) $g(z) = u(x,y) + iv(x,y) = e^{-iz}$. Since $\exp(z)$ is entire, $g'(z) = -ie^{-iz}$, by the chain rule. [or use CR].

- 3. Consider the function $u(x,y) = x^3 3xy^2 x$.
 - (a) Show that u(x, y) is harmonic.
 - (b) Find a harmonic conjugate v(x,y) to u(x,y).

(a) $u_{xx} + u_{yy} = 6x - 6x = 0.$

(b) By CR we have $v_x = -u_y = 6xy$. Thus $v = 3x^2y + k(y)$.

Differentiating and using CR we find $v_y = 3x^2 + k'(y) = u_x = -3x^2 - 3y^2 - 1$.

Therefore, $k'(y) = -3y^2 - 1 \Rightarrow k(y) = -y^3 - y + A$. Hence $v = 3x^2y - y^3 - y + A$,

where $A \in R$ is an arbitrary constant. By transcendental meditation

evidently $f(z) = u + iv = z^3 - z$.

4.

- (a) Express all values of $(\sqrt{3}+i)^{-i}$ in the form a+ib.
- (b) Find z if $\cosh(z) = \cos(4)$.
- (a) First note that $e^{i\pi/6} = \cos(\pi/6) + i\sin(\pi/6) = \frac{1}{2}(\sqrt{3}+i)$. Thus
- $(\sqrt{3}+i)^{-i} = [2e^{i\pi/6}]^{-i} = e^{-i(\ln(2)+i\pi/6+i2n\pi)} = e^{\pi/6+2n\pi}(\cos(\ln 2) i\sin(\ln 2)).$

where, here and below, $n = \pm \{0, 1, 2, 3, ...\}$.

(b) $\cos(4) = \cosh(x + iy) = \cosh(x)\cosh(iy) + \sinh(x)\sinh(iy) =$

 $\cosh(x)\cos(y) + i\sinh(x)\sin(y)$. There are two cases:

(i) $y = 0 \Rightarrow \cos(4) = \cosh(x) \ge 1$. Not possible.

(ii)
$$x = 0 \Rightarrow \cos(4) = \cosh(iy) = \cos(y)$$
. Hence $z = iy = i(\pm 4 + 2n\pi)$.

- 5. Consider the function $f(z) = z|z|^2$.
 - (a) Does f(z) have an antiderivative?
 - (b) Let γ_1 be the curve z(t) = (1+2i)t, where $0 \le t \le 1$, oriented with increasing t. Find $\int_{\gamma_1} f(z)dz$.
 - (c) Let γ_2 be the circular curve of radius 1, centre the origin, and orientation anticlockwise. Find $\int_{\gamma_2} f(z) dz$.

(a) Since F'(z) = f(z), both F(z) and f(z) must be analytic. But the given f(z) involves the factor |z|², which is nowhere differentiable. The answer is "no".
(b) By a direct calculation, the first integral is ∫((1+2i)t5t²(1+2i)dt = -(15/4) + 5i.
(c) The curve γ₂ is given by z(t) = e^{it}. Consequently we find directly

 $\int_{\gamma_2} g(z)dz = \int_0^{2\pi} (e^{it} \left| e^{it} \right|^2 e^{it} idt = \int_0^{2\pi} [-\sin(2t) + i\cos(2t)] = 0,$

although f(z) is not analytic.