1. Let $Q(t)$ be the amount of dye in the tank at time t. Clearly, $Q(0) = 200$ g. The differential equation governing the amount of dye is $Q'(t) = -2Q(t)/200$. The solution of this separable equation is $Q(t) = Q(0)e^{-t/100} = 200e^{-t/100}$. We need the time T such that $Q(T) = 2$ g. This means we have to solve $2 = 200e^{-T/100}$ and we obtain that $T = -100 \ln(1/100) = 100 \ln 100 \approx 460.5$ min.

13.(a) Let $Q' = -r Q$. The general solution is $Q(t) = Q_0 e^{-rt}$. Based on the definition of half-life, consider the equation $Q_0/2 = Q_0 e^{-5730 r}$. It follows that $-5730 r = \ln(1/2)$, that is, $r = 1.2097 \times 10^{-4}$ per year.

(b) The amount of carbon-14 is given by $Q(t) = Q_0 e^{-1.2097 \times 10^{-4} t}$.

(c) Given that $Q(T) = Q_0/5$, we have the equation $1/5 = e^{-1.2097 \times 10^{-4}T}$. Solving for the decay time, the apparent age of the remains is approximately $T = 13,305$ years.

25.(a) Measure the positive direction of motion upward. The equation of motion is given by $m dv/dt = -kv - mg$. The initial value problem is $dv/dt = -kv/m$ g, with $v(0) = v_0$. The solution is $v(t) = -mg/k + (v_0 + mg/k)e^{-kt/m}$. Setting $v(t_m) = 0$, the maximum height is reached at time $t_m = (m/k) \ln [(mg + kv_0)/mg]$. Integrating the velocity, the position of the body is

$$
x(t) = -mg t/k + \left[\left(\frac{m}{k} \right)^2 g + \frac{m v_0}{k} \right] (1 - e^{-kt/m}).
$$

Hence the maximum height reached is

$$
x_m = x(t_m) = \frac{m v_0}{k} - g(\frac{m}{k})^2 \ln \left[\frac{mg + k v_0}{mg} \right].
$$

(b) Recall that for $\delta \ll 1$, $\ln(1+\delta) = \delta - \delta^2/2 + \delta^3/3 - \delta^4/4 + \ldots$

(c) The dimensions of the quantities involved are $[k] = MT^{-1}$, $[v_0] = LT^{-1}$, $[m] =$ M and $[g] = LT^{-2}$. This implies that kv_0/mg is dimensionless.

Section 2.4

30. Since $n = 3$, set $v = y^{-2}$. It follows that $v' = -2y^{-3}y'$ and $y' = -(y^3/2)v'$. Substitution into the differential equation yields $-(y^3/2)v' - \varepsilon y = -\sigma y^3$, which further results in $v' + 2\varepsilon v = 2\sigma$. The latter differential equation is linear, and can be written as $(ve^{2\epsilon t})' = 2\sigma e^{2\epsilon t}$. The solution is given by $v(t) = \sigma/\epsilon + ce^{-2\epsilon t}$. Converting back to the original dependent variable, $y = \pm v^{-1/2} = \pm (\sigma/\varepsilon + ce^{-2\varepsilon t})^{-1/2}$.

33. The solution of the initial value problem $y'_1 + 2y_1 = 0$, $y_1(0) = 1$ is $y_1(t) = e^{-2t}$. Therefore $y(1^-) = y_1(1) = e^{-2}$. On the interval $(1, \infty)$, the differential equation
is $y_2' + y_2 = 0$, with $y_2(t) = ce^{-t}$. Therefore $y(1^+) = y_2(1) = ce^{-1}$. Equating the limits $y(1^-) = y(1^+)$, we require that $c = e^{-1}$. Hence the global solution of the initial value problem is

$$
y(t) = \begin{cases} e^{-2t}, & 0 \le t \le 1 \\ e^{-1-t}, & t > 1 \end{cases}
$$

Note the discontinuity of the derivative

$$
y'(t) = \begin{cases} -2e^{-2t}, & 0 < t < 1 \\ -e^{-1-t}, & t > 1 \end{cases}
$$