Math 370 Assignment 3 Sec. 2.5

15.(a) Inverting Eq.(11), Eq.(13) shows t as a function of the population y and the

carrying capacity K. With $y_0 = K/3$,

$$t = -\frac{1}{r} \ln \left| \frac{(1/3) [1 - (y/K)]}{(y/K) [1 - (1/3)]} \right|.$$

Setting $y = 2y_0$,

$$\tau = -\frac{1}{r} \ln \left| \frac{(1/3) [1 - (2/3)]}{(2/3) [1 - (1/3)]} \right|.$$

That is, $\tau = (\ln 4)/r$. If r = 0.025 per year, $\tau \approx 55.45$ years.

(b) In Eq.(13), set $y_0/K = \alpha$ and $y/K = \beta$. As a result, we obtain

$$T = -\frac{1}{r} \ln \left| \frac{\alpha \left[1 - \beta \right]}{\beta \left[1 - \alpha \right]} \right|.$$

Given $\alpha = 0.1$, $\beta = 0.9$ and r = 0.025 per year, $\tau \approx 175.78$ years.

Sec 2.6

- 4. First divide both sides by (2xy+2). We now have M(x,y)=y and N(x,y)=x. Since $M_y=N_x=0$, the resulting equation is exact. Integrating M with respect to x, while holding y constant, results in $\psi(x,y)=xy+h(y)$. Differentiating with respect to y, $\psi_y=x+h'(y)$. Setting $\psi_y=N$, we find that h'(y)=0, and hence h(y)=0 is acceptable. Therefore the solution is defined implicitly as xy=c. Note that if xy+1=0, the equation is trivially satisfied.
- 16. $M(x,y)=y\,e^{2xy}+x$ and $N(x,y)=bx\,e^{2xy}$. Note that $M_y=e^{2xy}+2xy\,e^{2xy}$, and $N_x=b\,e^{2xy}+2bxy\,e^{2xy}$. The given equation is exact, as long as b=1. Integrating N with respect to y, while holding x constant, results in $\psi(x,y)=e^{2xy}/2+h(x)$. Now differentiating with respect to x, $\psi_x=y\,e^{2xy}+h'(x)$. Setting $\psi_x=M$, we find that h'(x)=x, and hence $h(x)=x^2/2$. We conclude that $\psi(x,y)=e^{2xy}/2+x^2/2$. Hence the solution is given implicitly as $e^{2xy}+x^2=c$.

Sec 2.6

30. The given equation is not exact, since $N_x - M_y = 8x^3/y^3 + 6/y^2$. But note that $(N_x - M_y)/M = 2/y$ is a function of y alone, and hence there is an integrating factor $\mu = \mu(y)$. Solving the equation $\mu' = (2/y)\mu$, an integrating factor is $\mu(y) = y^2$. Now rewrite the differential equation as $(4x^3 + 3y)dx + (3x + 4y^3)dy = 0$. By inspection, $\psi(x,y) = x^4 + 3xy + y^4$, and the solution of the given equation is defined implicitly by $x^4 + 3xy + y^4 = c$.

Sec. 2.7

- 14. The Euler formula is $y_{n+1} = (1 ht_n)y_n + hy_n^3/10$, with $(t_0, y_0) = (0, 1)$.
- (a) 0.950517, 0.687550, 0.369188, 0.145990, 0.0421429, 0.00872877
- (b) 0.938298, 0.672145, 0.362640, 0.147659, 0.0454100, 0.0104931
- (c) 0.932253, 0.664778, 0.359567, 0.148416, 0.0469514, 0.0113722
- (d) 0.928649, 0.660463, 0.357783, 0.148848, 0.0478492, 0.0118978