Mast 330 / Math 370 Sec A Final Exam December 2004

Professor:	Richard Hall	
Instructions:	Please answer all 5 questions. Explain your working carefully.	
	Calculators are permitted. [Lined booklets]	

1.

(a) Find the general solution to the following differential equation and also a particular solution satisfying the given initial condition:

$$xy' - y = xy^2, \quad y(1) = 2.$$

- (b) If $y' = x + y^2$, and y(0) = 1, find an approximation for y(0.2).
- 2. A certain population obeys the growth equation $y' = ky(1 \alpha y)$, where k and α are positive parameters. Suppose that y(0) = 100, $\lim_{t \to \infty} y(t) = 1000$, and y(10) = 200. Find the values of α and k. [HINT: First find α ; then solve the differential equation with k not yet determined; now use the solution and y(10) to find k.]

3.

- (a) Find the orthogonal trajectories for the family of exponential curves given by $y = ce^x$, where $c \in \Re$. Sketch the two families.
- (b) Find the general solution to the differential equation:

$$(2x^3 + 2xy^2 + 2x)dx + 2ydy = 0.$$

4. Consider the forced oscillations of a damped spring-mass system represented by the differential equation

$$y'' + 2by' + y = \cos(\omega t),$$

where y(t) is the position of the mass at time t, $b \ge 0$ is a friction parameter, and ω is a positive input-frequency parameter.

- (a) Solve this problem in the frictionless case b = 0, with the initial conditions y(0) = 0, y'(0) = 0, and $\omega \neq 1$. In particular, find the solution in the limit $\omega \to 1$. [HINT: you can either find the limit of the solution for $\omega \neq 1$, or simply re-solve for the case $\omega = 1$.]
- (b) Describe the general solution of this problem in the case 0 < b < 1. In this case, find the steady-state solution approached in the limit $t \to \infty$.
- 5. By using Laplace transforms or otherwise solve the following initial-value problem in which a linear system, initially at rest, is stimulated by a delayed vibration g(t):

$$y'''(t) - y''(t) = g(t), \quad t \ge 0,$$

where

$$y(0) = y'(0) = y''(0) = 0,$$

and

$$g(t) = \begin{cases} 0 \text{ for } t < 2, \\ 5\sin(t-2) \text{ for } t \ge 2. \end{cases}$$

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$
1	$\frac{1}{s}, s > 0$
e^{at}	$\frac{1}{s-a}, \ s > a$
t^n , <i>n</i> integer > 0	$\frac{n!}{s^{n+1}}, \ s > 0$
$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \ s > 0$
$\sin(bt)$	$\frac{b}{s^2+b^2}, \ s>0$
$\cos(bt)$	$\frac{s}{s^2+b^2}, \ s>0$
$\sinh(bt)$	$\frac{b}{s^2 - b^2}, \ s > b $
$\cosh(bt)$	$\frac{s}{s^2 - b^2}, \ s > b $
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}, \ s > a$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}, \ s > a$
$e^{at}f(t)$	$F(s-a), \ s > a$
$(-t)^n f(t), n \text{ integer } > 0$	$F^{(n)}(s)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), \ c > 0$
$u_c(t)$	$rac{e^{-cs}}{s}, \ c \ge 0$
$u_c(t)f(t-c)$	$e^{-cs}F(s), \ c \ge 0$
$\delta(t-c)$	$e^{-cs}, \ c \ge 0$
$\int_0^t f(t- au)g(au)d au$	F(s)G(s)

Table of Laplace Transforms