Mast 330 /Math 370 Midterm Test 27 October 2004

1. Solve the initial-value problem $y' = e^{-y} \cosh(x)$, $x \ge 0$, $y(0) = 1$, and find the value of $y(5)$. [Recall: $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$].

Solution [1]: The equation is separable. We have $\int e^y dy = \int \cosh(x) dx$, that is to say $e^y = \sinh(x) + C$, or $y = \ln(\sinh(x) + C)$. The IC imply $C = e$. Thus $y(5) = \ln(\sinh(5) + e) \approx 4.34279.$

2. Find the general solution to the following differential equation and also a particular solution satisfying $y(\pi)=1$:

$$
xy' + 2y = \frac{\cos(x)}{x}, \quad x > 0.
$$

Solution [2]: The equation may be written in the general linear form $y' + py = g$. Thus

$$
y' + \frac{2}{x}y = \frac{\cos(x)}{x^2}.
$$

The integrating factor is then $\mu = exp(\int pdx) = x^2$. The general solution is provided by the formula $y = (\int \mu g dx + C)/\mu = (\sin(x) + C)/x^2$. The IC imply $y(\pi) = C/\pi^2 = 1$ *. Thus we have* $C = \pi^2$ *.*

3. Consider the differential equation

$$
2xdx + (2y + x^2 + y^2)dy = 0.
$$

- (a) Show that the equation is not exact as it stands but can me made exact by use of a suitable integrating factor μ . Find μ .
- (b) Find the general solution of the equation, and also a particular solution satisfying $y(0) = 2$.

Solution [3]: We write the given equation in the form $M dx + N dy = 0$. We note that $Q = M_y - N_x = -2x \neq 0$ implies that the equation is not exact. We see that Q/N is not a function of *x*, but $-Q/M$ is a functon of *y*. Hence an integrating factor $\mu(y)$ exists and we have $\mu'/\mu = -Q/M = 1$. Thus we find $\mu = e^y$ is a suitable integrating factor. The new exact differential form is

$$
dF(x,y) = F_x dx + F_y dy = e^y (2x) dx + e^y (2y + x^2 + y^2) dy = 0.
$$

Since integrating F_y immediately requires integrating by parts, we instead integrate *F*^x and find

$$
F(x,y) = \int 2xe^y \partial x = x^2e^y + k(y),
$$

where $k(y)$ is an unknown function. If we now differentiate this expression for F we find

$$
(2y + y2 + x2)ey = Fy = x2ey + k'(y).
$$

This implies $k(y) = \int e^y(2y+y^2)dy = y^2e^y$ [after a necessary integration by parts]. Finally we conclude $(x^2 + y^2)e^y = C$, and the IC imply $C = 4e^2$.

4. Consider the following differential equation which describes the vibrations of a spring-mass system:

$$
4y''(t) + 4y'(t) + y(t) = 0, \quad t \ge 0.
$$

- (a) Find the general solution.
- (b) Find a particular solution satisfying the initial conditions

 $y(0) = 1$, $y'(0) = -2$ and provide a rough sketch of the graph of $y(t)$ for $t \in [0, 20]$. When is $y = 0$?

Solution [4]: This equation is a second order homogeneous linear equation with constant coefficients. Trying $y = e^{rt}$ as a solution implies $4r^2 + 4r + 1 = 0$. This means that $r = -\frac{1}{2}$, twice. The solution obtained is $y_1 = e^{-\frac{1}{2}t}$. Since the root is repeated, we obtain another linearly independent solution in the form $y_2 = ty_1$. Thus the general solution is given by $y = e^{-\frac{1}{2}t}(A + Bt)$, where *A* and *B* are arbitrary constants. The IC imply $A = 1$ and $B = -3/2$. Thus the particular solution sought is $y = e^{-\frac{1}{2}t}(1 - 3t/2)$. This function vanishes when $t = 2/3$ (and also in the limit $t \to \infty$). The graph is shown in Fig.(1)

Figure 1. The particular solution of the de $4y''(t) + 4y'(t) + y(t) = 0$ satisfying the IC $y(0) = 1$, $y'(0) = -2$. [This graph was produced by the program **de**.]