Mast 330 /Math 370 Midterm Test 27 October 2004

Professor:	Richard Hall
Instructions:	Please answer all 4 questions.
	Explain your work clearly. Calculators are permitted.

1. Solve the initial-value problem $y' = e^{-y} \cosh(x), x \ge 0, y(0) = 1$, and find the value of y(5). [Recall: $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$].

Solution [1]: The equation is separable. We have $\int e^y dy = \int \cosh(x) dx$, that is to say $e^y = \sinh(x) + C$, or $y = \ln(\sinh(x) + C)$. The IC imply C = e. Thus $y(5) = \ln(\sinh(5) + e) \approx 4.34279$.

2. Find the general solution to the following differential equation and also a particular solution satisfying $y(\pi) = 1$:

$$xy' + 2y = \frac{\cos(x)}{x}, \quad x > 0$$

Solution [2]: The equation may be written in the general linear form y' + py = g. Thus

$$y' + \frac{2}{x}y = \frac{\cos(x)}{x^2}.$$

The integrating factor is then $\mu = exp(\int pdx) = x^2$. The general solution is provided by the formula $y = (\int \mu gdx + C)/\mu = (\sin(x) + C)/x^2$. The IC imply $y(\pi) = C/\pi^2 = 1$. Thus we have $C = \pi^2$.

3. Consider the differential equation

$$2xdx + (2y + x^2 + y^2)dy = 0.$$

- (a) Show that the equation is *not* exact as it stands but can me made exact by use of a suitable integrating factor μ . Find μ .
- (b) Find the general solution of the equation, and also a particular solution satisfying y(0) = 2.

Solution [3]: We write the given equation in the form Mdx + Ndy = 0. We note that $Q = M_y - N_x = -2x \neq 0$ implies that the equation is not exact. We see that Q/N is not a function of x, but -Q/M is a function of y. Hence an integrating factor $\mu(y)$ exists and we have $\mu'/\mu = -Q/M = 1$. Thus we find $\mu = e^y$ is a suitable integrating factor. The new exact differential form is

$$dF(x,y) = F_x dx + F_y dy = e^y (2x) dx + e^y (2y + x^2 + y^2) dy = 0.$$

Since integrating F_y immediately requires integrating by parts, we instead integrate F_x and find

$$F(x,y) = \int 2xe^y \partial x = x^2 e^y + k(y),$$

where k(y) is an unknown function. If we now differentiate this expression for F we find

$$(2y + y2 + x2)ey = Fy = x2ey + k'(y).$$

This implies $k(y) = \int e^y (2y+y^2) dy = y^2 e^y$ [after a necessary integration by parts]. Finally we conclude $(x^2+y^2)e^y = C$, and the IC imply $C = 4e^2$. 4. Consider the following differential equation which describes the vibrations of a spring-mass system:

$$4y''(t) + 4y'(t) + y(t) = 0, \quad t \ge 0.$$

- (a) Find the general solution.
- (b) Find a particular solution satisfying the initial conditions

y(0) = 1, y'(0) = -2 and provide a rough sketch of the graph of y(t) for $t \in [0, 20]$. When is y = 0?

Solution [4]: This equation is a second order homogeneous linear equation with constant coefficients. Trying $y = e^{rt}$ as a solution implies $4r^2 + 4r + 1 = 0$. This means that $r = -\frac{1}{2}$, twice. The solution obtained is $y_1 = e^{-\frac{1}{2}t}$. Since the root is repeated, we obtain another linearly independent solution in the form $y_2 = ty_1$. Thus the general solution is given by $y = e^{-\frac{1}{2}t}(A + Bt)$, where A and B are arbitrary constants. The IC imply A = 1 and B = -3/2. Thus the particular solution sought is $y = e^{-\frac{1}{2}t}(1 - 3t/2)$. This function vanishes when t = 2/3 (and also in the limit $t \to \infty$). The graph is shown in Fig.(1)

y" = -a*y-b*z

Figure 1. The particular solution of the de 4y''(t) + 4y'(t) + y(t) = 0 satisfying the IC y(0) = 1, y'(0) = -2. [This graph was produced by the program de.]