Math 370 Midterm Test 27th October 2016

Professor:	Richard Hall
Instructions:	Please answer all 4 questions.
	Explain your work clearly. Calculators are permitted.

1. Solve the initial-value problem $(1 + x^2) y' = (4 + y^2) 3x$, y(0) = 1. Solution [1]: The de is separable: $dy/(4 + y^2) = 3xdx/(1 + x^2)$. Integration and the application of tan yields $y = 2 \tan [3\ln(1 + x^2) + C]$. The IC imply $C = \arctan(1/2)$.

2. Consider the differential equation

$$y' = \frac{x+2y}{y-2x}$$

- (a) Find the general solution for regions where $(y 2x) \neq 0$.
- (b) What happens to the solution curve if (y 2x) approaches zero?

Solution [2]: There are a number of ways to solve this. (i) As an exact equation (x+2y)dx + (2x-y)dy = 0 with supposed solution f(x,y) = c. Then $f_x = x+2y$ and $f = x^2/2 + 2yx + k(y)$, and from $f_y = 2x - y$ we find $k(y) = -y^2/2$. The solution is then $x^2 + 4xy - y^2 = C$. (ii) By making the substitution v = y/x, y' = v + xv', leading to a separable de, (iii) By using polar coordinates, as I did in class.

3. Consider the differential equation

$$2y' + xy = 8x.$$

- (a) Find the general solution.
- (b) Find a particular solution satisfying y(0) = 5 and provide a rough sketch of this solution.

Solution [3]: This is first-order linear de for which the standard solution uses the integrating factor $\mu(x) = e^{\int p dx} = e^{x^2/4}$. The formula yields $y(x) = 8 + Ce^{-x^2/4}$. The IC demands that C = -3 so that the curve is an upside-down Gaussian hump with a minimum at x = 0 of y = 5, and right and left large-x limits of y = 8.

4. Consider the following differential equation in which y and g are functions of t:

$$y'' + y' - 6y = g.$$

- (a) Find the general solution if g = 0.
- (b) Find the general solution if $g(t) = 4\sin(t)$.

Solution [4]: (a) For g = 0, we try the function $y(t) = e^{rt}$ and find $r^2 + r - 6 = 0$, which implies r = 2 or r = -3. Thus the general solution when g = 0 is $y(t) = Ae^{2t} + Be^{-3t}$. (b) Since $g(t) = 4\sin(t)$ does not resonate with the system, we look for a particular solution of the form $y_P(t) = a\cos(t) + b\sin(t)$. Substituting y_P into the differential equation yields a solution when $\{b - 7a, -7b - a\} = \{0, 4\}$, that is to say a = -2/25, b = -14/25. The general solution of the differential equation is therefore $y(t) = Ae^{2t} + Be^{-3t} - \frac{2}{25}[\cos(t) + 7\sin(t)]$.