Professor:	Richard Hall
Instructions:	Please explain your solutions carefully.
Due Date:	19 th January 2017.

- 1.1 This problem is an entertainment (not graded). The unknown is a function f.
 - 1.1a Suppose f(x) is (i) continuously differentiable for all x ∈ ℜ, and (ii) the function f satisfies Cauchy's functional equation f(x + y) = f(x) + f(y). Prove that f(x) = f(1)x.
 1.1b Now solve Cauchy's equation under the weaker assumption that f(x) is continuous. HINT:

first solve for fractions, then recall that $x_n \to x \Rightarrow f(x_n) \to f(x)$.

1.2 If y = y(x), find the general solution to the ode $y' + 3y = \sin(x)$.

1.3 If u = u(x, y), find the general solution to the pde $u_x = 2x$.

- 1.4 Find the general solution to the pde $u_x + 3u = \sin(x)$.
- 1.5 Suppose u = u(x, y) satisfies the pde $3u_x + 4u_y + u = e^{x+y}$.
 - (a) Find the general solution.
 - (b) Find a particular solution satisfying $u(0, y) = e^y$.
- 1.6 Suppose u = u(x, y) satisfies the pde $yu_x + u_y = 1$
 - (a) Find the general solution.
 - (b) Find a particular solution satisfying $u(0, y) = y + y^4$.