

1.3 If $u = u(x, y)$, find the general solution to the pde $u_x = 2x$.

Solution: By integrating over x, we have $u(x, y) = x^2 + C(y)$.

1.4 Find the general solution to the pde $u_x + 3u = \sin(x)$.

Solution: By adapting the solution to (1.2) we have $u(x,y) = C(y)e^{-3x} + \frac{1}{10} [3\sin(x) - \cos(x)].$

1.5 Suppose $u = u(x, y)$ satisfies the pde $3u_x + 4u_y + u = e^{x+y}$.

- (a) Find the general solution.
- (b) Find a particular solution satisfying $u(0, y) = e^y$.

Solution: The characteristic lines are determined by $x'(s) = 3$ and $y'(s) = 4$ to be $x(s) = 3s + x_o$ and $y(s) = 4s + y_o$. Thus $3y - 4x = 3y_o - 4x_o$ = const. Along the characteristic lines we write $u(x,y) = v(s)$. Thus we have $v' + v = e^{7s+x_0+y_0}$. This is a first-order linear ode for $v(s)$ with general solution $v(s) = e^{-s} \left[\frac{1}{8} e^{8s + x_o + y_o} + C_1(3y - 4x) \right]$.

Many equivalent expressions are possible in terms of x and y, because $3y - 4x$ is constant. One possibility is:

$$
u(x,y) = e^{-x/3}C(3y - 4x) + \frac{1}{8}e^{x+y}.
$$

Thus $u(0, y) = C(3y) + \frac{1}{8}e^y$ which should equal e^y . Thus $C(X) = \frac{7}{8}e^{X/3}$, and we have $u(x,y) = e^{-x/3}\frac{7}{8}e^{(3y-4x)/3} + \frac{1}{8}e^{x+y} = \frac{7}{8}e^{(3y-5x)/3} + \frac{1}{8}e^{x+y}$

- 1.6 Suppose $u = u(x, y)$ satisfies the pde $yu_x + u_y = 1$
	- (a) Find the general solution.
	- (b) Find a particular solution satisfying $u(0, y) = y + y^4$.

Solution: The characteristic curves are determined by $x'(s) = y$ and $y'(s) = 1$ to be $y(s) = s + y_o$ and $x(s) = s^2/2 + y_0s + x_0$. Thus $x - \frac{1}{2}y^2 = x_0 - \frac{1}{2}y_0^2 = \text{const.}$ On the characteristic curves we may write $u(x,y) = v(s)$, where $v'(s) = 1$. Thus $v(s) = s + C_1(x - \frac{1}{2}y^2)$. By substituting $s = y - y_0$, and absorbing y_0 in C_1 , we find $u(x,y) = y + C(x - \frac{1}{2}y^2)$. Thus $u(0, y) = y + C(-\frac{1}{2}y^2)$, which should equal $y + y^4$. This implies $C(X) = 4X^2$. Hence the particular solution sought is given by $u(x, y) = y + 4(x - \frac{1}{2}y^2)^2.$