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Department of Mathematics & Statistics

Math 473 Mast 666 Mast 841 Sec A Final Exam March 2015

Partial Differential Equations

Professor: Richard Hall

Instructions: Please answer all 5 questions which carry equal marks.
Explain your work carefully.
Approved calculators are permitted.

1. Consider the partial differential equation yux(x, y)− 3uy(x, y) + u(x, y) = y.

(a) Sketch the characteristic curves for this equation.

(b) Find the general solution u(x, y).

(c) Find the particular solution satisfying the initial condition

u(x, 0) = cosh(x)

2. Suppose that u(x, t) represents the temperature in a side-insulated bar of length

L = 10 which at time t = 0 has the temperature profile u(x, 0) = f(x) = (70− 5x).

For times t > 0, the ends of the bar are insulated. Suppose that u(x, t) satisfies the

heat equation ut(x, t) = kuxx(x, t) = where k = 1
4 .

(a) Find the steady-state temperature profile u(x,∞).

(b) Find the temperature profile u(x, t) for t > 0.

(c) If Q(t) =
∫ L

0
u(x, t)dx, show that Q(t) is constant and explain what this means.

3. Consider the Sturm-Liouville eigenproblem −y′′(x) + x2y(x) = λy(x) for x ∈ [−1, 1]

and with the boundary conditions BC: y(−1) = y(1) = 0 .

(a) What can you say about the set of eigenvalues {λn}∞n=1 ?

(b) Construct two suitable ‘trial functions’ φ1(x), φ2(x), which are C2 and satisfy

the BC. Use these functions to estimate the first two eigenvalues λ1, λ2 .

(c) Explain carefully what is the relationship between the estimates found in (b) and

the unknown exact eigenvalues.
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4. Consider Laplace’s equation uxx + uyy = 0 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 with

the boundary conditions BC: u(x, 0) = −x + 4 sin(3πx) , u(0, y) = y + 7 sin(2πy),

u(x, 1) = y + 2x, and u(1, y) = 4y − 1.

(a) Find a function of the form w(x, y) = a+ bx+ cy + dxy

such that w(0, 0) = 0, w(1, 0) = −1, w(0, 1) = 1, w(1, 1) = 3.

(b) Write the solution u(x, y) of (a) in the form u(x, y) = v(x, y) + w(x, y), and

solve for u(x, y) by first finding v(x, y) .

5. Consider the vibrations of a circular drum of radius r0 whose displacement u(r, θ, t)

satisfies the wave equation c2∆u = utt, where c is a constant. Suppose that the

boundary of the drum is clamped so that u(r0, θ, t) = 0.

(a) Find the differential equations satisfied by each of the factors in solutions of the

form u(r, θ, t) = R(r)Θ(θ)T (t).

(b) Solve the equation for Θ(θ) .

(c) Describe the normal modes of vibration of the drum.
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