Math 473 Sec A Midterm Test 5th March 2015

Professor:	Richard Hall
Instructions:	Please answer all three questions.
	Explain your work clearly.
	Duration: 1 hour.

1. **[12]** Consider the partial differential equation given by

 $2u_x(x,y) + xu_y(x,y) + u(x,y) = e^x.$

- (a) What are the characteristic curves for this equation.
- (b) Find the general solution u(x, y).
- (c) Find the particular solution satisfying the initial condition $u(0,y) = y^3$.
- 2. [12] Suppose that u(x,t) represents the temperature in a bar of length L = 10which at time t = 0 has the temperature profile u(x,0) = f(x) = 10. For times t > 0, the ends of the bar are kept at constant temperatures given by $u(0,t) = T_1 = 10^{\circ}$ C and $u(L,t) = T_2 = 40^{\circ}$ C. Suppose that u(x,t) satisfies the heat equation $u_{xx}(x,t) = k u_t(x,t)$, where k = 2.
 - (a) Find the steady-state temperature profile $u(x, \infty)$.
 - (b) Find an expression for the temperature profile u(x,t) for t > 0.
 - (c) Provide some qualitative sketches that show how the initial profile u(x, 0) evolves under the heat equation to the steady-state profile $u(x, \infty)$.
- 3. [6] Consider the Sturm-Liouville eigenvalue problem on the interval $[a, b] \subset \Re$, a < b, given by $-(py')' + qy = \lambda gy$, where the functions p(x) and g(x) are smooth and positive on (a, b), and y(a) = y(b) = 0.

Please answer only either part (i) or part (ii) :

- (i) Find the eigenfunctions $\{y_n\}$ and eigenvalues $\{\lambda_n\}$ in the special case q = 0, $p = k^2$, and g = 1.
- (ii) In the general case suppose that $y_m(x)$ and $y_n(x)$ are eigenfunctions corresponding respectively to the eigenvalues λ_m and λ_n . Prove that if $\lambda_m \neq \lambda_n$, then y_m is orthogonal to y_n with respect to the inner product defined by $(y_1, y_2) = \int_a^b y_1(x) y_2(x) g(x) dx$.