Math 473 Sec A Midterm Test Solution Notes March 2015

Professor:	Richard Hall
Instructions:	Please answer all three questions.
	Explain your work clearly.
	Duration: 1 hour.

- 1. **[12]** Consider the partial differential equation given by $2u_x(x, y) + xu_y(x, y) + u(x, y) = e^x.$
 - (a) What are the characteristic curves for this equation.
 - (b) Find the general solution u(x, y).
 - (c) Find the particular solution satisfying the initial condition $u(0,y) = y^3$.

Let v(s) = u(x(s), y(s)). The characteristic curves are obtained from $\{x'(s) = 2, y'(s) = x\}$ and then the pde on these curves becomes $v'(s) + v(s) = e^{x(s)}$. Solving for x(s) and y(s) we find $x = 2s + x_0$ and $y = s^2 + x_0s + y_0$. Thus the curves are parabolas $y - x^2/4 = y_0 - x_0^2/4$. By solving the linear ode for v(s) we then find $u = C(y - x^2/4) \exp(-x/2) + \exp(x)/3$. Fitting the IC (c) yields the function $C(X) = X^3 - 1/3$; thus the particular solution sought is $u = ((y - x^2/4)^3 - 1/3) \exp(-x/2) + \exp(x)/3$.

- 2. [12] Suppose that u(x,t) represents the temperature in a bar of length L = 10which at time t = 0 has the temperature profile u(x,0) = f(x) = 10. For times t > 0, the ends of the bar are kept at constant temperatures given b $u(0,t) = T_1 = 10 \,^{\circ}\text{C}$ and $u(L,t) = T_2 = 40 \,^{\circ}\text{C}$. Suppose that u(x,t) satisfies the heat equation $u_{xx}(x,t) = k \, u_t(x,t)$, where k = 2.
 - (a) Find the steady-state temperature profile $u(x, \infty)$.
 - (b) Find an expression for the temperature profile u(x,t) for t > 0.
 - (c) Provide some qualitative sketches that show how the initial profile u(x,0) evolves under the heat equation to the steady-state profile $u(x,\infty)$.

This is a very standard problem. $T_1 = 10$, $T_2 = 40$, L = 10, $u(x, \infty) = T_1 + (T_2 - T_1)x/L = 10 + 3x$. $u(x, t) = v(x, t) + u(x, \infty)$. Then v(0, t) = v(L, t) = 0, and v(x, 0) = f(x) = -3x. We find the Fourier coefficients for a sine series for f(x) are given by

$$b_n = \frac{2}{10} \int_0^{10} (-3x) \sin\left(\frac{n\pi x}{10}\right) dx = (-1)^n \frac{60}{n\pi}$$

Thus

$$u(x,t) = \sum_{n=0}^{\infty} b_n \sin\left(\frac{n\pi x}{10}\right) \exp\left(-\frac{t}{2}\left(\frac{n\pi}{10}\right)^2\right) + 10 + 3x.$$

[6] Consider the Sturm-Liouville eigenvalue problem on the interval [a, b] ⊂ ℜ,
a < b, given by - (py')' + qy = λgy, where the functions p(x) and g(x) are smooth and positive on (a, b), and y(a) = y(b) = 0.

Please answer only either part (i) or part (ii) :

- (i) Find the eigenfunctions $\{y_n\}$ and eigenvalues $\{\lambda_n\}$ in the special case q = 0, $p = k^2$, and g = 1.
- (ii) In the general case suppose that $y_m(x)$ and $y_n(x)$ are eigenfunctions corresponding respectively to the eigenvalues λ_m and λ_n . Prove that if $\lambda_m \neq \lambda_n$, then y_m is orthogonal to y_n with respect to the inner product defined by $(y_1, y_2) = \int_a^b y_1(x) y_2(x) g(x) dx$.
- (i) By solving the ode $k^2 y'' = -\lambda y$ with the BC y(a) = y(b) = 0, one finds $\lambda_n = \left(\frac{n\pi k}{b-a}\right)^2$, and $y_n = \sin\left(\frac{n\pi(x-a)}{b-a}\right)$, where $n = 1, 2, 3, \ldots$ A very convenient approach is first to change variables to L = (b-a) and z = x - a, which converts the given problem on [a, b] to the more familiar one on [0, L]. It also comes out directly with a bit more algebraic effort with trigonometric identities.
- (ii) One writes the two eigenequations, calling them (1) and (2). By integrating the difference (1)y₁ − (2)y₂ over the interval [a, b] and using the BC, it follows (y₁, y₂) (λ₁ − λ₂) = 0. Green's SL formula (Text p265) can be used, or a direct approach using integration by parts: there is not much difference in the effort required.