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Notes on Linear algebra n235-1 [RLH]

Basis and dimension A vector space V has dimension n. We shall usually

assume that n < ∞, and also that the scalars of the vector space are real

numbers. If u,v ∈ V, then so is the linear combination au+ bv, where a and

b are scalars. Every vector v ∈ V can be expressed as a linear combination of

n linearly independent basis vectors β = {e1, e2, e3, . . . en}. We may change

to another basis, but in order to represent every vector in V we need to have

exactly n basis vectors. The vectors {v1,v2, . . .vm} are said to be ‘linearly

independent’ if

a1v1 + a2v2 + . . . amvm = 0 implies a1 = a2 = . . . am = 0.

Thus the linearly independent vectors are essentially ‘different’ in the sense

that no one of them can be expressed as a linear combination of the oth-

ers. By introducing the idea that two vectors can be orthogonal to each

other (the dot product between them is zero), we can express the notion of

linear independence by means of orthogonality: if a set of vectors are mu-

tually orthogonal, then they are linearly independent. The introduction of

orthogonality allows us to perform many calculations in a very nice way.
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The dot product It might appear that the dot product is very special.

This is true. But even in an abstract vector space (with real scalars), we can

always choose a basis β = {ei} in terms of which we have the representation

x = x1e1 + x2e2 + . . . xnen.

This generates a correspondence between the vector v and its coordinate

vector in Rn given explicitly by

[x]β = [x] = [x1, x2, . . . xn]
t

A convention has crept in here: just to be definite, when we adopt matrix

notation, we think of [v] as a 1 × n matrix (a column vector). Thus, to

continue, we could define x · y by [x]t[y] even though x and y may not

themselves be vectors in Rn. We would have in this case

x · y = [x]t[y] = x1y1 + x2y2 + . . . + xnyn =
n∑

i=1

xiyi.
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The dot product If x is a vector in R3, then we have x = x1i+ x2j + x3k,

and y = y1i+y2j+y3k, where {i, j,k} is the standard basis in R3. We define

the dot product by

x · y = x1y1 + x2y2 + x3y3.

This definition is a bit ‘dry’. We first observe that x · x = x2
1 + x2

2 + x2
3. By

the theorem of Pythagoras we see that this is the square of the length of x.

We write the length itself using the notation ||x|| of a ‘norm’. Thus in Rn

we have

||x|| = ||x||2 =
√

x · x =

√√√√
n∑

i=1

x2
i .

The subscript ‘2’ indicates that this is a special choice of a wider possible

family of norms.

Matrix multiplication The dot product between two vectors u and v in

Rn can be simply written in matrix notation. First of all, we can identify

v with the n × 1 matrix [v] of the elements of v. We may on occasion, if

the context makes things clear, replace [v] with v, or even simply with v.

Anyway, it follows from the rules of matrix multiplication that u ·v = [u]t[v];

the latter we may also write simply utv. By extension, we can think of the
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product of an m× k matrix A with a k × n matrix B as the result of m× n

dot products of the m rows of A with the n columns of B. This is often a

very fruitful picture.

Geometry We can introduce some more geometry into the picture by taking

advantage of the Cauchy-Schwarz inequality which says |x·y| ≤ ||x||||y||,

with equality only if y is a multiple of x. If neither vector has length zero,

we see that the dot product divided by the lengths is always in the range

[−1, 1] and we can define the angle θ between the vectors by the relation

cos(θ) =
x · y

||x||||y||.

This extends to vectors in Rn the notion from elementary geometry in R3 of

the angle between two vectors. Once we have this definition in place, we can

define ‘orthogonality’ to be the case where θ = ±π
2
, that is to say cos(θ) = 0,

or x · y = 0. This notion is only useful if neither vector has zero length.



n235-1 RLH 5

Theorem If the vectors {vi} are mutually orthogonal, then they are linearly

independent

Proof Suppose the set of (non-zero) mutually orthogonal vectors is {v1,v2, . . .vm},

then we must consider the vanishing of a linear combination, that is to say

a1v1 + a2v2 + . . . amvm = 0.

If we now take the dot product of the left side with the vector vk we imme-

diately obtain akvk · vk = ak||vk||2 = 0; that is to say, ak = 0. This is true

for every k, 1 ≤ k ≤ m. Thus the vectors are linearly independent.
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Change of basis If, in a flight of fancy, the basis vectors themselves

are arranged into a column ‘vector’ [e], then we get expressions such as

v = [e]t[v]e = [e]tPP−1[v]e = [e′]t[v]e′. This little formula summarizes the

whole scene to do with changes of base. The only thing left is to show that

P = [e′i]e, that is to say, the columns of P are the coordinates of the new

basis vectors {e′} wrt the old ones {e}. A few bubble diagrams then lead to

the usual transformation rules [F ]f
′

e′ = Q−1[F ]feP for transformations of the

representations of linear maps. Just as with the clock changes in Spring and

Autumn, this little problem can be blown quite out of proportion to its inher-

ent difficulty. On a quiet day, one can branch here into equivalence relations

and similarity transformations, thus cementing home the maxim F ↔ [F ],

that is to say, that a linear transformation may be identified with its matrix

representation with respect to bases in the domain and range: matrices are

everything.
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Norms A norm is a map || · || from vectors or matrices to the reals having 4

basic properties; in the case of square matrices a 5th (consistency) property

is also included:

1. ||x|| ≥ 0

2. ||x|| = 0 ⇐⇒ x = 0

3. ||cx|| = |c| ||x||

4. ||x + y|| ≤ ||x||+ ||y|| (triangle inequality)

5. ||AB|| ≤ ||A|| ||B|| (for square matrices)

Inner Products If V is a vector space (over R), an inner product 〈x, y〉 is

a map from V × V to the R with the following properties:

1. 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉 linearity

2. 〈x, y〉 = 〈y, x〉 symmetry

3. 〈x, x〉 ≥ 0 〈x, x〉 = ||x||2

4. 〈x, x〉 = 0 if and only if x = 0

Cauchy-Schwarz inequality |〈x, y〉| ≤ ||x|| ||y||.


