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↓MARKS

10 Problem 1 : Consider the plane curve defined by the parametric equations:
x = sin2 t, y = cos t, 0 ≤ t ≤ 2π.

(a). Find d2y/dx2 in terms of t.

(b). Find the values of t at which the plane curve is concave upward.

10 Problem 2 : Consider the curves γ1 and γ2 defined by polar equations:

γ1 : r = 1 − cos θ, γ2 : r = 1 + cos θ.

(a). Sketch the polar curves γ1 and γ2.

(b). Find the area A of the region which lies inside γ1 and outside γ2.

10 Problem 3 : Consider the function

f(x) = ln

(

1 + x

1 − x

)

(a). Find the Taylor series of f(x) at x = 0.

(b). Find the interval of convergence for the Taylor series obtained in (a).



FINAL MAST 218, December 2014 Page 2 of 2

10 Problem 4 : (a). Find an equation of the plane passing through the point A (1, 2, 3)
and the line (3t, 2t, t), −∞ < t < +∞.

(b). Find an equation of the line passing through the point (2, 2, 0) and perpen-

dicular to the plane obtained in (a).

(c). Find the distance from the point (2, 2, 0) to the plane obtained in (a).

10 Problem 5 : Consider the space curve r(t) = 〈3t cos t, 4t, 3t sin t〉.
(a). Find an equation of the tangent line to the curve at r(1).

(b). Find the length of the curve for t ∈ [0, 4]. You can use a formula
∫ √

1 + u2du =
u

2

√
1 + u2 +

1

2
ln(u +

√
1 + u2) + C .

10 Problem 6 : Consider the space curve r(t) = 〈t, 2t, t2〉.
(a). Find the unit tangent vector T(1) and the principal normal vector N(1) of

the curve at t = 1.

(b). Use the Chain Rule to find the partial derivatives ∂u
∂s

and ∂u
∂t

, where

u = xeyz2

, x = ln(st), y = t3, z = s2 + t2.

10 Problem 7 : Find the limit, if it exists, or show that the limit does not exist:

(a). lim
(x,y)→(0,0)

3xy2

x2 + y2
, (b). lim

(x,y)→(0,0)

sin(x2y2)

x4 + y4
.

10 Problem 8 : Consider the function f(x, y) = (y2 + x2)ex2−y2

(a). Find all critical points of f(x, y).

(b). Classify those critical points obtained in (a) as points of local minimum, local

maximum, or saddle points.

10 Problem 9 : For the function f(x, y) = 3−2x+y+xy, find the absolute maximum

and minimum values of f(x, y) in the region enclosed by the curves y = x2 and y = 4.

10 Problem 10 : Use the Lagrange Multipliers to find the maximum and minimum
values of f(x, y) = xy2 subject to the constraint: 4x2 + 9y2 = 36.
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