Professor:	Richard Hall
Instructions:	Please answer all 5 questions.
	Explain your work clearly. Calculators are not permitted.

- 1. Evaluate the integral $I = \iint_{D} (x^2(1 + \sin x) + x^4 \tan y + x^2) dA$, where $D = \{(x, y) | x^2 + y^2 \le 4\}$.
- 2. Find the centroid of the region bounded below by z = 0 and above by $z = 1 x^2 y^2$.
- 3. If $\rho(x,y) = Ce^{-4x^2 9y^2}$ is a probability density on \Re^2 , find (i) C and (ii) the mean \bar{f} of $f(x,y) = (x-y)^2$.
- 4. Find the moments of inertia of a thin circular disc of radius a and mass M about (i) an axis perpendicular to the disc and a distance a from the centre, and (ii) an axis in the plane of the disc that is a/3 from a parallel axis through the centre of the disc. [HINT: recall the parallel-axes and perpendicular-axes theorems shown below.]
- 5. Find the value of the integral $I = \iint_D y^2 dA$, where D is the region bounded by the four curves xy = 1, xy = 2, $xy^2 = 2$, $xy^2 = 4$.

Parallel axes theorem If I_X is the moment of inertia about an axis through the centre of mass, then the moment of inertial about a prallel axis X' distance d from X is given by $I_{X'} = I_X + Md^2$. **Perpendicular axes theorem** If $\{X, Y, Z\}$ are perpendicular axes through the centre of area of a flat plate, and $\{X, Y\}$ are in the plane of the plate, then $I_Z = I_X + I_Y$.