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Math 683 Assignment 2

Professor: Richard Hall
Instructions: Please use file names and identifiers exactly as requested.
Due Date: 24 October 2000

Projects and files. We need a policy. What I would suggest is that we develop

toolbox items in declaration-definition pairs such as { bzef.h, bzef.cpp }with the bzef.h

file having the #ifndef #define bzef h . . . #endif ‘protection.’ For a demo or test

program such as zeftest.cpp we can simply put #include ”bzef.h” #include ”bzef.cpp”

at the top, or we can use a project and ‘insert’ rather than ‘include’ bzef.cpp. One is

tempted to use the former method for small demo programs. However, the toolbox

should always be ‘project ready.’ I should like to have all the mentioned files, and the

exe files of the demos and tests, on a single diskette submitted with the assignment,

along with print outs of the source code. Typically when I grade the work I will look

at your report and print-outs, and then run the exe files. Generating programs that

‘work’ is an important part of this course.

Note: Please do not submit demo or test programs that invite the user to input data.

Instead, write the programs so that they test or demonstrate your code and report

both the inputs and results on the screen, perhaps similar to the little demo programs

that are on the course web page. Preferably, begin your programs with #include w.h

so as to take advantage of our common environment and style.

(2.1) Construct the ‘toolbox’ zero-finding functions bzef, rzef, and nzef as discussed

in class and write a short demo program zeftest.cpp which, in particular, finds the

zeros of the function

g(x) = [ax2exp(−bx3)− c]/(1 + dx2), with a = 10, b = 2, c = 0.56789, d = 2.3456789 (1)

(2.2) Consider the use of Newton’s (actually, the secant) method for finding the

critical point of a function f(x) by finding a root of f ′(x).

(i) Define a ‘secant-method’ iterative sequence {xn} which stops when |f ′(xn)| < tol.

For the derivatives, use the symmetric approximations f ′′(x) ≈ (f(x+ dx)− 2f(x) +

f(x− dx))/(dx2) and f ′(x) ≈ (f(x+ dx)− f(x− dx))/(2dx).

(ii) Consider the alternative procedure of approximating f(x) iteratively by using the

polynomial p(x) = a + bx + cx2 in the following way. From the values p(x) = f(x),

p(x− dx) = f(x− dx), and p(x+ dx) = f(x+ dx), find a, b, c and hence x′ satisfying
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p′(x′) = 0, and repeat. Prove mathematically that this algorithm produces the

same sequence as that of (i).

(iii) Construct the C++ function double crit(fptype1 f, double x, double dx,

double &xc, double dtol = 1e-4) which corresponds to (i). The search stops

when |f(x+ dx)− f(x− dx)|/(2dx) < dtol; the (approximate) critical point is stored

in the reference variable xc. Write the files { crit.h, crit.cpp, crittest.cpp }which

declare, define, and test the above function: crit should be used, in particular, to

find the local extrema of the function g(x) defined in Eq(1).

(2.3) Consult Numerical Recipes = NR on the topic of local extrema. Construct the

‘toolbox’ function gmin(fptype1 f, double x1, double x2, double x3, double

&xc, double xtol) which uses the golden-search algorithm to find an (approximate)

minimum of f : R→ R. Unlike with crit, use for gmin the stopping condition |x1−x3| <

xtol. Before calling gmin one assumes the inequalities x1 < x2 < x3 and f(x1) > f(x2) <

f(x3). Read about bracketing in NR. However, don’t necessarily build protection for

this in the function gmin itself, but make sure that the conditions are clearly indicated

in a comment at the top of the header file gmin.h. The idea here is not to complicate

or slow down a basic tool; if one wants protection, one inserts it before calling gmin.

The final position of the (approximate) minimum is stored in the reference variable

xc. Although, mathematically, finding a maximum of f is equivalent to finding a

minimum of −f, do take the trouble to add the useful variant gmax to the toolbox.

Now use gmin and gmax to verify the local extrema of g(x) already found by using crit

in (2.2) above. Comparing crit to gmin / gmax, do you have any comments concerning

(a) the ease of use and (b) the different stopping rules employed?

Note It will eventually be useful to overload all the toolbox items so that they apply

to fun-type objects. If you have time, this would be a good moment to take care of

this task. The overloaded functions simply have foo(x) replaced by foo->f(x) in

their definition bodies, where foo is the fptype1 pointer, or corresponding fun-type

pointer, used in the parameter list of the toolbox function.


