
page 1 of 4

Mast 683 Assignment 4

Professor: Richard Hall
Instructions: Answer one question only. Your solution should include a careful

exposition of the mathematics and program design, along with suit-
able specific examples to illustrate the results, using graphics where
possible. Submit hard copy of all computer code and executable
files on a diskette. The problem descriptions are not complete spec-
ifications: the student should discuss the chosen problem with me
before starting serious work.

Due Date: 28th November 2000.

(4.1) Consider the numerical integration of the differential equation y′(x) =
f(x, y), y(t0) = y0 by the (classical) Runge-Kutta method of order 4.

(i) Define the class rk(fun2 *f) which has the member functions void init(double

xi, double yi), void seth(double hi), double getx(), double gety()

and void iterate(). We may call an instance of this class a Runge-Kutta
‘engine’.

(ii) Construct an engine for the case f(x, y) = ay cos(bx+ cy) and find y(10) given that
a = 1, b = 2, c = 0.2, and y(0) = −1.

(iii) Now add graphics. There are many ways to do this. One idea might be sim-
ply to ‘add’ some member functions such as: void rk::xplot(gwin &w, dou-

ble y0); this rk::xplot plots the solution y(x) satisfying y(x0) = y0, where x0

is the first argument of the call to gwin::scale(...). Use the augmented
class rk to study the behaviour of the solutions of the non-linear differential
equation in (ii) with respect to the parameters a, b, c. You may wish to add a
further method rk::xplots(gwin &w, double y1, double y2, int n = 10)

which plots a ‘field’ of n solutions with different initial y0 values.

(4.2) Consider the quantum-mechanical eigenvalue problem

Hψn = Enψn, where H = −∆ + vf(x),

the ‘coupling parameter’ v > 0, n = 0, 1, 2, . . . , and the ‘wave function’ ψn is in a
suitable domain in the Hilbert space L2[R]. For example, in the case of the harmonic
oscillator f(x) = x2 it is known that

En(v) = v
1
2 (2n+ 1). (1)

If we assume that the potential ‘shape’ f(x) has a finite minimum point and that it is
monotone increasing in directions away from this point, then the WKB approximation
En(v) for the eigenvalues is given by solving the following equation for E

(n+
1
2

)π =
∫ x2

x1

[E − vf(x)]
1
2 dx, (2)

Mast 683 Assignment 4 page 2 of 4

where x1 and x2 are the zeros of the integrand.

(i) Design a function called energy(. . .) which allows one to ‘set’ v and n and com-
pute the corresponding approximation En(v). Test this for the harmonic oscillator
f(x) = x2, v = 1, n = 0, 1, 2, . . . , 9, for which the exact solution is given by (1).

(ii) Plot a graph of the unsymmetrical potential g(x) = |x| for x < 0 and g(x) = e−x
2−1

for x > 0 on [−10, 10]× [0, 50]; and repeat the calculation of (i) for this case.

(iii) Plot graphs in [0, 10]× [0, 20] of the (approximate) ‘energy trajectories’ En(v), n =
0, 1, 2, 3, 4, for the unsymmetrical potential g(x) of (ii).

HINTS There are many different ways of doing these jobs. The following are some
suggestions. The classes ker and wkb are each derived classes of the class fun. In
mathematical terms ker, the kernel, is a function of x, and wkb is the function of E
whose zero is the value of the energy sought. Thus mathematically we would write

ker(x) = [E − vf(x)]
1
2 , (3)

and
wkb(E) = (n+

1
2

)π −
∫ x2

x1

ker(x)dx. (4)

To complete the toolbox for this task one might define the function double

energy(wkb *ww, int ni, double vi, double e1, double e2, double etol =

1e-6)

for purely numerical results, and, for graphics, one could define the class ev:fun

an instance of which, say eg, is, in mathematical terms, the function eg(v) = En(v).
For plotting the energy trajectories corresponding to g(x) I suggest that you
scale(0,10,0,20,50) and xplotd(eg, 0.1,10,50) in a suitable loop: very small
values of v may defeat the routine for finding the zeros x1 and x2.

(4.3) As in the WKB problem, consider the lowest discrete eigenvalue E1 of the
Schrödinger operator H = −∆ + vf(x), where the potential shape f(x) is symmetric.
Use a family of ‘trial functions’ with fixed shape φ(xs) and variable scale factor s.

Form the Rayleigh Quotient given by

E(s) =
(φ,Hφ)
(φ, φ)

.

The best possible estimate for the Gaussian family of trial functions (and for a given
v) is provided by minimizing E(s) with respect to s. Construct a general variational
‘engine’ called ray for this task. The constructor will set the functions f and φ and
have a method to set the coupling parameter v > 0. The methods of ray will then
compute the Rayleigh Quotient and minimize it with respect to the scale s. As a test
example you can consider the potential family f(x) = ax2 +bx4 and the Gaussian ‘trial
function’ φ(x) = e−x

2
. This has the advantage that for a = 1 and b = 0, we know the

exact answer E0 = E(ŝ) = v
1
2 , where ŝ is the optimized scale. Now estimate E0 for

Mast 683 Assignment 4 page 3 of 4

the case a = b = 1 with v = 1 (the quartic an-harmonic oscillator). Can you plot a
graph of your approximation for E0(v) with v ∈ [0, 10]?

(4.4) Design a vector class vec for arrays of type double. Include a variety of con-
structors such as vec(int n, double a, double b) which generates a mesh, that
is to say a set of n equally spaced points on the interval [a, b]; and vec(int n, dou-

ble a, double b, fptype1 f) creates a vector in which the function f has been
applied to a mesh. Now design a class called lpoly which is derived from vec and
from fun. The constructor lpoly(vec vx, vec vy) receives the x and y values
as vectors and creates a private vector of the coefficients for a Lagrange polynomial
by using Newton’s divided-difference method; meanwhile the virtual function dou-

ble lpoly::f(double) becomes the corresponding Lagrange polynomial (arranged
optimally for computations). Thus an instance of the class lpoly has two very dis-
tinct aspects. Now apply your class lpoly in a program that plots some polynomial
approximations for |x| and |x|3, illustrating that neither of these functions is ‘like’ a
polynomial.

(4.5) Design a class called surf which is derived from gwin. The class surf includes
new data and methods which allow for the scaling of a three-dimensional block, which
is then projected on to the plane (without perspective). The constructor simply
creates an instance of gwin. Possible methods (returning void) might be called brot
(which rotates and tilts the block and sets some private variables), bscale, bframe,
bline, projx, projy, curve(f,g,h,t1,t2,n), which plots a curve in space, and various
surface plotters. An ambitious goal might be to define a method called perhaps
surf2h(fptype2 f,...) which plots a surface with ‘hidden lines’.

(4.6) This problem is about the FFT. Consider the heat-flow (diffusion) equation in
one spatial dimension. We let u(x, t) represent the temperature of a uniform bar of
length ` at the point x at time t. The bar is insulated on the sides and initially the
temperature of the bar is given by the expression u(x, 0) = f(x), 0 ≤ x ≤ `. As the time
increases from t = 0 the temperature u(x, t) varies in such a way that it satisfies the
diffusion equation:

∂u

∂t
= a2 ∂u

∂x2
,

where a is a constant depending on the substance of the bar. For copper a = 1.14,
for glass a = 0.006 cm2sec−1 . For the special case where the boundary conditions are
u(0, t) = u(`, t) = 0, we have the following general solution:

u(x, t) =
∞∑
n=1

cnsin(
nπx

`
)e−(nπa`)2t, (a)

where

u(x, 0) = f(x) =
∞∑
n=1

cnsin(
nπx

`
). (b)

Thus the procedure for finding the solution of this problem is first to find the Fourier
coefficients {cn} of f(x) from (b); then, for each t, multiply by the exponential time

Mast 683 Assignment 4 page 4 of 4

factors, and transform back to find u(x, t), as shown in (a). This task is in general
computationally very difficult. Develop the Fast Fourier Transform algorithm FFT
in the form of a class fft (an FFT engine) with constructor fft(int m), where the
dimension n of the discrete Fourier representation is given by n = 2m. Once an
instance of the engine has been constructed its functions can be used to transform
a complex array of dimension n in either direction: a ‘message’ can be sent to the
fft to change the direction of the transform. This apparatus should first be tested
numerically and then it should be applied to solve the diffusion equation in the case
that ` = π and the initial temperature is given by

u(x, 0) = f(x) =

(
x
b

)2
, if 0 ≤ x ≤ b,(

x−π
π−b

)2

, if b ≤ x ≤ π,

where b = 2.5. Write a program that plots a series of 20 graphs showing how the
temperature profile u(x, t) evolves in time for the case of glass. Although the diffusion
problem is real, it is not necessary to generate a new fft for this special case: use the
general complex one. Prove mathematically that for insulated ends, ut(0, t) = ut(`, t) =
0, the ‘total heat’ ∝

∫ `
0
u(x, t)dx is invariant with respect to t. If time permits, it

would be interesting to illustrate this case too.

(4.7) Solve the problem of finding the shape of a vibrating circular drum. You will
first need a Runge-Kutta engine rk2d for the initial-value problem y′′ = f(x, y, y′). Your
program should solve the ode for the radial Bessel function, and provide a graphical
illustration of this. The program should also provide a graphical illustration of the
shape of the drum surface at a given time and for given values of the radial and
angular node numbers m ≥ 0 and n ≥ 0.

(4.8) Consider the continuous functions f : [0, 1] → [0, 1] which satisfy f(0) = f(1) = 0
and are unimodal. Suppose the max of f(x) is λ ≤ 1. An example of such a function
is f1(x) = 4λx(1 − x). Write a graphics program that allows the user to explore the
iterations {xn = f ◦ f ◦ . . . f(x0)} of such a function, starting at the initial value x = x0.

For a given f the sequence {xn}∞n=0 depends on the initial point x0 and on λ. Explore
this with your program and comment on the dependence of the sequence on λ (for
‘most’ x0).
(4.9) Write a program to explore prime numbers. The program should have a tabular
area that would generate a table of prime numbers in a given range, and a graphical
area that would exhibit a graph of π(x), the number of primes ≤ x. The graphical area
would also show the values of one or more approximations to π(x). The generation of
prime numbers and the design of approximations to π(x) are two minor ‘industries’
within number theory. The program should accommodate numbers up to the largest
long integer. This may mean that, for some lines of code, that temporary double

approximations to integers will have to be used. A more serious program would,
of course, have to include a new ‘very large’ integer type in order to transcend the
arbitrary limitations of long integer.

