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Abstract

We suppose that the ground-state eigenvalue E = F (v) of the Schrödinger Hamil-

tonian H = −∆ + vf(x) in one dimension is known for all values of the coupling v > 0.

The potential shape f(x) is assumed to be symmetric, bounded below, and monotone

increasing for x > 0. A fast algorithm is devised which allows the potential shape f(x)

to be reconstructed from the energy trajectory F (v). Three examples are discussed

in detail: a shifted power-potential, the exponential potential, and the sech-squared

potential are each reconstructed from their known exact energy trajectories.
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1. Introduction

This paper is concerned with what may be called ‘geometric spectral inversion’.

We suppose that a discrete eigenvalue E = F (v) of the Schrödinger Hamiltonian

H = −∆ + vf(x) (1.1)

is known for all sufficiently large values of the coupling parameter v > 0 and we try to

use this data to reconstruct the potential shape f. The usual ‘forward’ problem would

be: given the potential (shape) f(x), find the energy trajectory F (v); the problem we

now consider is the inverse of this F → f.

This problem must at once be distinguished from the ‘inverse problem in the

coupling constant’ discussed, for example, by Chadan and Sabatier [1]. In this latter

problem, the discrete part of the ‘input data’ is a set {vi} of values of the coupling

constant that all yield the identical energy eigenvalue E. The index i might typically

represent the number of nodes in the corresponding eigenfunction. In contrast, for

the problem discussed in the present paper, i is kept fixed and the input data is the

graph (F (v), v), where the coupling parameter has any value v > vc, and vc is the

critical value of v for the support of a discrete eigenvalue with i nodes. We shall

mainly discuss the bottom of the spectrum i = 0 in this paper. However, on the basis

of results we have obtained for the inversion IWKB of the WKB approximation [2],

there is good reason to believe that constructive inversion may also be possible starting

from any discrete eigenvalue trajectory Fi(v), i > 0. In fact, perhaps not surprisingly,

IWKB yields better results starting from higher trajectories; moreover, they become

asymptotically exact as the eigenvalue index is increased without limit.

By making suitable assumptions concerning the class of potential shapes, theo-

retical progress has already been made with this inversion problem [3-5]. The most

important assumptions that we retain throughout the present paper are that f(x)

is symmetric, monotone increasing for x > 0, and bounded below: consequently the

minimum value is f(0). We assume that our spectral data, the energy trajectory F (v),

derives from a potential shape f(x) with these features. We have discussed [3] how

two potential shapes f1 and f2 can cross over and still preserve spectral ordering

F1 < F2. It is known [4] that lowest point f(0) of f is given by the limit

f(0) = lim
v→∞

F (v)
v

. (1.2)

We have proved [4] that a potential shape f has a finite flat portion ( f ′(x) = 0 ) in

its graph starting at x = 0 if and only if the mean kinetic energy is bounded. That is

to say, s = F (v)− vF ′(v) < K, for some positive number K. More specifically, the size

b of this patch can be estimated from F by means of the inequality:

s ≤ K ⇒ f(x) = f(0), |x| ≤ b, and b =
π

2
K−

1
2 . (1.3)
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The monotonicity of the potential, which allows us to prove results like this, also

yields the

Concentration Lemma [4]

q(v) =
∫ a

−a
ψ2(x, v)dx >

f(a)− F ′(v)
f(a)− f(0)

→ 1, v →∞, (1.4)

where ψ(x, v) is the normalized eigenfunction satisfying Hψ = F (v)ψ. More impor-

tantly, perhaps, if F (v) derives from a symmetric monotone potential shape f which

is bounded below, then f is uniquely determined [5]. The significance of this result

can be appreciated more clearly upon consideration of an example. Suppose the bot-

tom of the spectrum of H is given by F (v) =
√
v, what is f? It is well known, of

course, that f(x) = x2 → Fo(v) =
√
v; but are there any others? Are scaling arguments

reversible? A possible source of disquiet for anyone who ponders such questions is the

uncountable number of (unsymmetric) perturbations [6] of the harmonic oscillator all

of which have the identical spectrum to that of the unperturbed oscillator f(x) = x2 .

If, in addition to symmetry and monotonicity, we also assume that a potential

shape f1(x) vanishes at infinity and that f1(x) has area, then a given trajectory func-

tion F1(v) corresponding to f1(x) can be ‘scaled’ [5] to a standard form in which

the new function F (v) = αF1(βv) corresponds to a potential shape f(x) with area

−2 and minimum value f(0) = −1. Thus square-well potentials, which of course are

completely determined by depth and area, are immediately invertible; moreover it is

known that, amongst all standard potentials, the square-well it ‘extremal’ for it has

the lowest possible energy trajectory. In Ref.[5] an approximate variational inversion

method is developed; it is also demonstrated constructively that all separable poten-

tials are invertible. However, these results and additional constraints are not used in

the present paper. When a potential has area 2A , we first assumed, during our early

attempts at numerical inversion, that it would be very useful to determine A from

F (v) and then appropriately constrain the inversion process. However, the area con-

straint did not turn out to be useful. Thus the numerical method we have established

for constructing f(x) from F (v) does not depend on use of this constraint, and is

therefore not limited to the reconstruction of potentials which vanish at infinity and

have area.

Much of numerical analysis assumes that errors arising from arithmetic computa-

tions or from the computation of elementary functions is negligibly small. The errors

usually studied in depth are those that arise from the discrete representation of con-

tinuous objects such as functions, or from operations on them, such as derivatives or

integrals. In this paper we shall take this separation of numerical problems to a higher

level. We shall assume that we have a numerical method for solving the eigenvalue

problem in the forward direction f(x) → F (v) that is reliable and may be considered
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for our purposes to be essentially error free. Our main emphasis will be on the design

of an effective algorithm for the inverse problem assuming that the forward problem

is numerically soluble. The forward problem is essential to our methods because we

shall need to know not only the given exact energy trajectory F (v) but also, at each

stage of the reconstruction, what eigenvalue a partly reconstructed potential gener-

ates. This line of thought immediately indicates that we shall also need a way of

temporarily extrapolating a partly reconstructed potential to all x.

Our constructive inversion algorithm hinges on the assumed symmetry and mono-

tonicity of f(x). This allows us to start the reconstruction of f(x) at x = 0, and se-

quentially increase x. In Section (2) it is shown how numerical estimates can be made

for the shape of the potential near x = 0, that is for x < b, where b is a parameter

of the algorithm. In Section (3) we explore the implications of the potential’s mono-

tonicity for the ‘tail’ of the wave function. In Section (4) we establish a numerical

representation for the form of the unknown potential for x > b and construct our

inversion algorithm. In Section (5) the algorithm is applied to three test problems.

2. The reconstruction of f(x) near x = 0.

Since the energy trajectory F (v) which we are given is assumed to arise from a

symmetric monotone potential, and since the spectrum generated by the potential is

invariant under shifts along the x-axis, we may assume without loss of generality that

the minimum value of the potential occurs at x = 0. We now investigate the behaviour

of F (v), either analytically or numerically, for large values of v. The purpose is to

establish a value for the starting point x = b > 0 of our inversion algorithm and

the shape of the potential in the interval x ∈ [0, b]. First of all, the minimum value

f(0) of the potential is provided by the limit (1.2). Now, if the mean kinetic energy

s = (ψ,−∆ψ) = F (v) − vF ′(v) is found to be bounded above by a positive number K,

then we know [4] that the potential shape f(x) satisfies f(x) = f(0), x ∈ [0, b], where

b is given by (1.3). In this case we have a value for b and also the shape f(x) inside

the interval [0, b].

If the mean potential energy s is (or appears numerically to be) unbounded, then

we adopt another strategy: we model f(x) as a shifted power potential near x = 0.

Since we never know f(x) exactly, we shall need another symbol for the approximation

we are currently using for f(x). We choose this to be g(x) and we suppose that the

bottom of the spectrum of −∆ + vg(x) is given by G(v). The goal is to adjust g(x)

until G(v) is close to the given F (v). Thus we write

f(x) ≈ g(x) = f(0) +Axq, x ∈ [0, b]. (2.1)

Therefore we have three positive parameters to determine, b, A, and q. We first

suppose that g(x) has the form (2.1) for all x ≥ 0. We now choose a ‘large’ value v1
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of v. This is related to the later choice of b by a bootstrap argument: the idea is that

we choose v1 so large that the turning point determined by

ψxx(x, v1)/ψ(x, v1) = v1f(x)− F (v) = 0 (2.2)

is equal to b. The concentration lemma guarantees that this is possible. By scaling

arguments we have

G(v) = f(0)v + E(q)(vA)
2

2+q , (2.3)

where E(q) is the bottom of the spectrum of the pure-power Hamiltonian −∆ + |x|q.
We now ‘fit’ G(v) to F (v) by the equations G(v1) = F (v1) and G(2v1) = F (2v1) which

yield the estimate for q given by

η =
2

2 + q
=

log(F (2v1)− 2v1f(0))− log(F (v1)− v1f(0))
log(2)

. (2.4)

Thus A is given by

A = ((F (v1)− v1f(0))/E(q))
1
η /v1. (2.5)

We choose b to be equal to the turning point corresponding to the model potential

g(x) with the smaller value of v, that is to say so that f(0) +Abq = F (v1)/v1, or

b =
(
F (v1)− v1f(0)

Av1

) 1
q

. (2.5)

Thus we have determined the three parameters which define the potential model g(x)

for x ∈ [−b, b].

3. The tail of the wavefunction

Let us suppose that the ground-state wave function is ψ(x, v). Thus the turning

point ψxx(x, v) = 0 occurs for a given v when

x = xt(v) = f−1(R(v)), R(v) =
(
F (v)
v

)
. (3.1)

The concentration lemma (1.4) quantifies the tendency of the wave function to be-

come, as the coupling v is increased, progressively more concentrated on the patch

[−c, c], where x = c is the point (perhaps zero) where f(x) first starts to increase.

This allows us to think in terms of the wave function having a ‘tail’. We think of a

symmetric potential as having been determined from x = 0 up to the current point

x. The question we now ask is: what value of v should we use to determine how f(x),

or, more particularly, our approximation g(x) for f(x), continues beyond the current

point. We have found that a good choice is to choose v so that the turning point

xt(v) = x/2, or some other similar fixed fraction σ < 1 of the current x value. The
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algorithm seems to be insensitive to this choice. Since g(x) has been constructed up

to the current point, and F (v) is known, the value of v required follows by inverting

(3.1). It has been proved [4] that R(v) is monotone and therefore invertible. Hence

we have the following general recipe for v :

v = R−1(g(σx)), σ =
1
2
. (3.2)

Since we can only determine Schrödinger eigenvalues of H = −∆+vg(x) if the potential

is defined for all x, we must have a policy about temporarily extending g(x). We have

tried many possibilities and found the simplest and most effective method is to extend

g(x) in a straight line, with slope to be determined.

In Figure (1) we illustrate the ideas just discussed for the case of the sech-squared

potential. The inset graph shows the sech-squared potential perturbed from x = xa

by five straight line extensions; meanwhile the main graph shows the corresponding

set of five wave functions which agree for 0 ≤ x ≤ xa and then continue with different

‘tails’ dictated by the corresponding potential extensions. The value of the coupling v

is the value that makes the turning point of the wave function occur at x = xa/2. This

figure illustrates the sort of graphical study that has lead to the algorithm described

in this paper.

4. The inversion algorithm

We must first define the ‘current’ approximation g(x) for the potential f(x)

sought. For values of x less than b, g(x) is defined either as the horizontal line

f(x) = f(0) or as the shifted power potential (2.1). For values of x greater than b,

the x-axis is divided into steps of length h. Thus the ‘current’ value of x would be

of the form x = xk = b + kh, where k is a positive integer. The idea is that g(xk)

is determined sequentially and g(x) is interpolated linearly between the xk points.

We suppose that {g(xk)} have already been determined up to k and we need to find

y = g(xk+1). For x ≥ xk we let

g(x) = g(xk) + (y − g(xk))
x− xk
h

. (4.1)

If, from a study of F (v), the underlying potential f(x) has been shown [5] to be

bounded above, it is convenient to rescale F (v) so that it corresponds to a potential

shape f(x) which vanishes at infinity. In this case it is slightly more efficient to

modify (4.1) so that for large x the straight-line extrapolation of g(x) is ‘cut’ to zero

instead of becoming positive. In either case we now have for the current point xk an

approximate potential g(x) parameterized by the ‘next’ value y = g(xk+1). The task

of the inversion algorithm is simply to choose this value of y.
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Let us suppose that, for given values of k and y, the bottom of the spectrum of

H = −∆ + vg(x) is given by G(v, k, y), then the inversion algorithm may be stated in

the following succinct form in which σ < 1 is a fixed parameter. Find y such that

vg(σxk) = F (v) = G(v, k, y); then g(xk+1) = y. (4.2)

The value of v is first chosen so that the turning point of the wave function generated

by g occurs at σxk; after this, the value of y is chosen so that G ‘fits’ F for this value

of v. The value of the parameter σ chosen for the examples discussed in section (5)

below is σ = 1
2 . The idea behind this choice can best be understood from a study

of Figure (1): the value of the coupling v must be such that the current value of x

for which y is sought is in the ‘tail’ of the corresponding wave function; that is to

say, the turning point σx should be before x, but not too far away. Fortunately the

inversion algorithm seems to be insensitive to the choice of σ.
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5. Three examples

The first example we consider is the unbounded potential whose shape f(x) and

corresponding exact energy trajectory F (v) are given by the {f, F} pair

f(x) = −1 + |x| 32 ←→ F (v) = −v + E(3/2)v
4
7 , (5.1)

where E(3/2) is the bottom of the spectrum of H = −∆+|x| 32 and has the approximate

value E(3/2) ≈ 1.001184. Applying the inversion algorithm to F (v) we obtain the

reconstructed potential shown in Figure (2). We first set v1 = 104 and find that the

initial shape is determined (as described in Section (2)) to be −1+x1.5 for x < b = 0.072.

For larger values of x the step size is chosen to be h = 0.05 and 40 iterations are

performed by the inversion algorithm. The results are plotted as hexagons on top of

the exact potential shape shown as a smooth curve. This entire computation takes

less than 20 seconds with a program written in C++ running on a 200 MHz Pentium

Pro.

The following two examples are bounded potentials both having large-x limit

zero, lowest point f(0) = −1, and area −2. The exponential potential [7,8] has the

{f, F} pair

f(x) = −e−|x| ←→ J ′
2|E|

1
2

(2v
1
2 ) = 0 ≡ E = F (v), (5.2)

where J ′ν(x) is the derivative of the Bessel function of the first kind of order ν. For

the sech-squared potential [8] we have

f(x) = −sech2(x) ←→ F (v) = −
[(

v +
1
4

) 1
2

− 1
2

]2

. (5.3)

In Figure (3) the two energy trajectories are plotted. Since the two potentials have

lowest value −1 and area −2 it follows [5] that the corresponding trajectories

both have the form F (v) ≈ −v2 for small v and they both satisfy the large-v

limit limv→∞ (F (v)/v) = −1. Thus the differences between the potential shapes is

somehow encoded in the fine differences between these two similar energy curves

for intermediate values of v : it is the task of our inversion theory to decode this

information and reveal the underlying potential shape. If we apply the inversion

algorithm to these two problems we obtain the results shown in Figures (4) and

(5). The parameters used are exactly the same as for the first problem described

above. The time taken to perform the inversions is again less than 20 seconds if we

discount, in the case of the exponential potential, the extra time taken to compute

F (v) itself.

6. Conclusion
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Once we suspect (or know) that an energy trajectory F (v) derives from a potential

shape f(x), it is certainly possible in principle to model the potential discretely as g(x)

and then find g approximately by a least-squares fit of G(v) to F (v). Such a ‘brute

force’ method would not be easy or fast, even for problems in one dimension. In terms

of the reconstructions presented in this paper, one would have to consider minimizing

a function of the form
∑40
i=1 |G(vi; Y)− F (vi)|2, where the vector Y represents the 40

values of g(xk) to be determined. We have found that such a function of Y has very

erratic behaviour unless the starting point can be chosen quite close to the critical

point.

The purpose of the approach discussed in this paper is however not so much to

do with efficiency as with understanding. The method we have found is intimately

linked to the basic properties of the problem: the implications of monotonicity, the

relation between the position of the turning point of the wave function and the value

of v, and the tail behaviour. The effectiveness of the resulting algorithm stems from

its systematic use of all this information. If a potential shape f(x) is symmetric but

not monotonic (on the half axis), then for large values of the coupling v the problem

will necessarily split into regimes that become more and more isolated as v increases.

The situation could become arbitrarily complicated, perhaps involving resonances,

and we have no idea at present whether reconstruction F → f would in principle be

possible in the general case.

If the potential were unimodal and monotonic away from the minimum point,

we do not at present know what might be the spectral inheritance of the additional

property of the symmetry of f(x). Is there non-uniqueness in this case? Could a

symmetric potential be constructed that would have the same energy trajectory F (v)

as that of a given non-symmetrical unimodal potential shape f(x)? Many interesting

questions such as this which are simple to pose nevertheless appear at present to be

very difficult to answer.

In our earlier papers on this topic we discussed some suggestions for applications

of this form of spectral inversion. The situations that are most strongly suggestive

are those such as the screened-Coulomb potentials used in atomic physics where the

coupling varies with the atomic number. In such a case Fn(v) or, more accurately, pair

differences between such functions, would only be known at certain isolated points.

Now that an effective form of constructive inversion is available, it will be possible to

consider this more physically important type of application. Another approach which

has not yet been applied to geometric spectral inversion is via control theory. Rabitz

et al [9,10] have successfully used ideas from control theory to reconstruct molecular

potentials from sets of data that are directly measurable. This is the ultimate goal of

the present work on geometric spectral inversion.
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Figure (1) The potential f(x) = −sech2(x) is perturbed from x = xa by straight-line

segments. Each segment leads to a perturbation in the tail of the corresponding wave

function. The coupling v is chosen so that xa = xt/2, where xt is the turning point

of the wave function.



Constructive Inversion of Energy Trajectories in Quantum Mechanics page 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f(x)   

 

Figure (2) Constructive inversion of the energy trajectory F (v) for the shifted power

potential f(x) = −1 + |x| 32 . For x ≤ b = 0.072, the algorithm correctly generates the

model f(x); for larger values of x, in steps of size h = 0.05, the hexagons indicate the

reconstructed values for the potential f(x), shown exactly as a smooth curve. The

unnormalized wave functions are also shown.
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Figure (3) The ground-state energy trajectories F (v) for the exponential poten-

tial (E) and the sech-squared potential (S). For small v, F (v) ≈ −v2; for large v,

limv→∞ (F (v)/v) = −1. The shapes of the underlying potentials are buried in the de-

tails of F (v) for intermediate values of v.
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Figure (4) Constructive inversion of the energy trajectory F (v) for the exponential

potential f(x) = − exp(x). For x ≤ b = 0.048, the algorithm correctly generates the

model f(x) = −1 + |x|; for larger values of x, in steps of size h = 0.05, the hexagons

indicate the reconstructed values for the potential f(x), shown exactly as a smooth

curve. The unnormalized wave functions are also shown.
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Figure (5) Constructive inversion of the energy trajectory F (v) for the sech-squared

potential f(x) = −sech2(x). For x ≤ b = 0.1, the algorithm correctly generates the model

f(x) = −1 + x2; for larger values of x, in steps of size h = 0.05, the hexagons indicate

the reconstructed values for the potential f(x), shown exactly as a smooth curve. The

unnormalized wave functions are also shown.


