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Abstract
It is shown that exact solutions may be found for the energy eigenvalue
problem generated by the class of semirelativistic Hamiltonians of the form
H =

√
m2 + p2 + V̂ , where V̂ is a non-local potential with a separable kernel

of the formV(r, r ′) = −∑n
i=1 vifi(r)gi(r

′). Explicit examples in one and three
dimensions are discussed, including the Yamaguchi and Gauss potentials. The
results are used to obtain lower bounds for the energy of the corresponding
N-boson problem, with upper bounds provided by the use of a Gaussian trial
function.

PACS number: 03.65.Ge

1. Introduction

We study semirelativistic problems in which the Hamiltonian H has the relativistically correct
expression K(p2) =

√
m2 + p2, p ≡ |p|, for the energy of a free particle of mass m and

momentum p, and an added static interaction potential V̂ . The Hamiltonian is therefore given
by

H =
√

m2 + p2 + V̂ . (1.1)

The eigenvalue equation Hψ = Eψ is usually called the spinless Salpeter equation [1, 2].
For many potentials, this Hamiltonian can be shown [3] to be bounded below and essentially
self-adjoint, and its spectrum can be defined variationally. From the point of view of solvability,
these features represent significant technical advantages over the more complete Bethe–
Salpeter formulation. There is, however, one remaining difficulty, namely, the non-locality of
the kinetic-energy operator.

The ‘usual’ multiplicative potential operator of elementary quantum mechanics is
generated by a special kernel of the form V(x, x ′) = V (x)δ(x, x ′). Thus, we have

(V̂ ψ)(x) =
∫ ∞

−∞
V (x)δ(x, x ′)ψ(x ′) dx ′ = V (x)ψ(x), (1.2)
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and this special form makes V̂ a local ‘multiplicative’ operator. Since (with h̄ = 1) the
Schrödinger kinetic-energy operator p2/(2m) = −∂2

x

/
(2m) is also local, the non-relativistic

Hamiltonian is a local operator. By contrast, the kinetic-energy operator K̂ =
√

m2 + p2

in the semirelativistic problem is non-local and this is the source of many of the difficulties
encountered with the corresponding eigenvalue problem. The action of K̂ is defined [3] in
terms of the Fourier transform F(ψ) = ψ̃ . Thus, in one dimension, we have explicitly

F(K̂ψ)(k) =
√

m2 + k2ψ̃(k), (1.3)

where

ψ̃(k) = 〈ψ |k〉 =
∫ ∞

−∞
〈ψ |x〉 dx〈x|k〉 = 1√

2π

∫ ∞

−∞
e−ikxψ(x) dx. (1.4)

The main purpose of the present article is to show that with separable potentials, the non-
locality of both terms in the Hamiltonian allows us to solve the eigenproblem exactly, up to
a definite integral. This result, in turn, allows us to find a lower bound to the energy of the
corresponding N-boson problem in which the particles interact pairwise. The class of potential
kernels we shall consider may be written as (for the one-body problem in one dimension)

V(x, x ′) = −v

n∑
i=1

fi(x)gi(x
′). (1.5)

Such potentials have been studied as models for a variety of physical problems [4–8]. Our
main general results for a single particle in one and three dimensions are proved in section 2.
In section 3, we look at some exponential examples in one dimension and in section 4, we
solve the eigenproblem for the three-dimensional Yamaguchi [4] and Gauss potentials. In
section 5, we apply the results to study a system of N identical bosons interacting pairwise in
three dimensions via a non-local Gauss potential: the one-particle exact solutions provide an
energy lower bound, to which we adjoin a variational upper bound derived with the aid of a
scale-optimized Gaussian trial function.

2. Exact solutions

For definiteness, we first solve the problem with one separable potential term in one spatial
dimension. Thus, we suppose that the kernel of the potential operator V̂ has the form

V(x, x ′) = −vf (x)g(x ′), (2.1)

where v is a positive coupling parameter. The eigenequation for the semirelativistic one-body
problem becomes√

m2 + p2ψ(x) −
∫ ∞

−∞
vf (x)g(x ′)ψ(x ′) dx ′ = Eψ(x). (2.2)

If we represent the Fourier transforms by F(ψ) = ψ̃,F(f ) = f̃ and F(g) = g̃, then
equation (2.2) becomes

√
m2 + k2ψ̃(k) − vcf̃ (k) = Eψ̃(k), (2.3)

where the constant c is given by

c =
∫ ∞

−∞
g̃(k′)ψ̃(k′) dk′.
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Thus ψ̃ is given by

ψ̃(k) = cvf̃ (k)√
m2 + k2 − E

. (2.4)

If we now multiply both sides of (2.4) by g̃(k) and integrate, we find the following formula
relating the reciprocal coupling to the energy E:

1

v
=

∫ ∞

−∞

f̃ (k)g̃(k) dk√
m2 + k2 − E

. (2.5)

Equations (2.4) and (2.5) show that if there is a solution for given f (x) and g(x), then this
solution is unique (up to a phase). The corresponding energy eigenvalue is now determined
by (2.5) since v is a monotone function of E. It is clear that

√
m2 + k2 � m. If we write

E = E(m) = m + e(m), then, for bound states, e = E − m < 0. Consequently, we have√
m2 + k2 − E > 0. That is to say, there are no mathematical singularities arising from this

factor in the various integrands. In the large-m limit, the problem approaches the corresponding
non-relativistic case since

√
m2 + k2 − m ∼ k2/(2m); moreover, this approach is from below

since
√

m2 + k2 − m < k2/(2m). In the examples we shall consider, the function E(m) − m

approaches the non-relativistic m-dependence as the mass increases. Another interesting
special case for the semirelativistic problem is the ultra-relativistic limit m → 0. This, of
course, has no natural non-relativistic counterpart.

When there are more than one term in the separable potential, we have

V(x, x ′) = −
n∑

i=1

vifi(x)gi(x
′), (2.6)

We now define the constants {ci}ni=1 by

ci =
∫ ∞

−∞
g̃i (k

′)ψ̃(k′) dk′, (2.7)

and formula (2.4) for the wavefunction in this more-general case becomes

ψ̃(k) =
∑n

i=1 vif̃ i(k)ci√
m2 + k2 − E

. (2.8)

The relation between the coupling parameters and the eigenvalue is now expressed by the
condition that the linear equations for the constants {ci}ni=1 are non-trivial. If we define the
matrix elements of the n × n matrix J by

Jji = vi

∫ ∞

−∞

g̃j (k)f̃ i(k) dk√
m2 + k2 − E

, (2.9)

then the more-general eigenvalue formula, corresponding to (2.5), may be written as

det(I − J ) = 0. (2.10)

There are similar results in three spatial dimensions. We consider one-term central
potentials of the form

V(r, r′) = −vf (r)g(r ′), (2.11)

where r = |r|. In this case the Fourier transform F(f ) of f , for example, takes the form

f̃ (k) = 1

(2π)
3
2

∫
e−ik·rf (r) d3r =

(
2

π

) 1
2 1

k

∫ ∞

0
sin(kr)rf (r) dr (2.12)
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in which k = |k|. Similar reasoning to that of the one-dimensional case then yields the
solution formulae

ψ̃(k) = cvf̃ (k)√
m2 + k2 − E

(2.13)

and

1

v
= 4π

∫ ∞

−∞

f̃ (k)g̃(k)k2 dk√
m2 + k2 − E

. (2.14)

These results can also easily be extended to potential kernels with a sum of separable terms.

3. Problems in one dimension

We now consider some examples. Since the general solution is given in section 2, the purpose
of the examples is to demonstrate that exact solutions are indeed feasible. We solve the first
problem in some detail and then present summary solutions and results for a selection of other
problems.

3.1. The one-term exponential potential

We consider the potential

V(x, x ′) = −vf (x)f (x ′) = −v e−|x|/a e−|x ′ |/a, v, a > 0. (3.1)

The potential factors in momentum space are therefore given by

f̃ (k) =
√

2

π

∫ ∞

0
cos(kx)f (x) dx =

√
2

π

(
a

1 + a2k2

)
, (3.2)

and formulae (2.4) and (2.5) for the momentum-space wavefunction and the corresponding
eigenvalue become

ψ̃(k) = cav

(1 + a2k2)
(√

m2 + k2 − E
) (3.3)

and

1

v
=

∫ ∞

−∞

f̃ 2(k) dk√
m2 + k2 + |E|

= 4a2

π

∫ ∞

0

1

(1 + a2k2)2
(√

m2 + k2 − E
) . (3.4)

This equation may be inverted to give E for each choice of the parameter set {a,m, v}. In
figure 1, we exhibit the m dependence of E−m for a = 1 and v = {1, 2, 3}. In the Schrödinger
limit, m → ∞, we find

e(m) = E(m) − m = −v

a
. (3.5)

Meanwhile for the ultrarelativistic case m = 0, we have

1

v
= −a2(2 + 2a2e2 + 3aeπ + a3e3π + 4 ln(−ae))

(1 + a2e2)2π
, e < 0. (3.6)

The graphs shown in figure 1 are consistent with these relations. We see that this
semirelativistic problem is indeed exactly soluble.
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Figure 1. Plots of exact semirelativistic energies E(m)−m for the non-local exponential potential
V(x, x′) = −v e−|x|−|x′ | for three values of the coupling v.

3.2. A two-term exponential potential

We consider now the case

V(x, x ′) = −va e−(|x|+|x ′ |)/a − vb e−(|x|+|x ′ |)/b, va, vb, a, b > 0. (3.7)

In particular, if we choose the explicit values a = 1, b = 2, va = vb = 1, the secular
equation (2.10) becomes

(1 − J11)(1 − J22) − J 2
12 = 0, (3.8)

where the integrals are given by

J11 = 4

π

∫ ∞

0

dk

(1 + k2)2
(√

m2 + k2 − E
) , (3.9)

J22 = 16

π

∫ ∞

0

dk

(1 + 4k2)2
(√

m2 + k2 − E
) , (3.10)

and

J12 = 8

π

∫ ∞

0

dk

(1 + k2)(1 + 4k2)
(√

m2 + k2 − E
) . (3.11)

Thus for m = {0, 0.5, 1} we find, respectively, from (3.9) that E = {−1.144 62,−0.814 543,

−0.361 31}. In figure 2, we exhibit a graph showing E − m as a function of m for this
problem.
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Figure 2. Plots of exact semirelativistic energies E(m)−m for the non-local two-term exponential

potential V(x, x′) = −e−(|x|+|x′ |) − e− 1
2 (|x|+|x′ |).

4. Problems in three dimensions

The Yamaguchi potential [4] has a potential kernel given by

V(r, r′) = −v

(
e−βr

r

) (
e−βr ′

r ′

)
, v, β > 0. (4.1)

Because of the volume measure r2 dr in three dimensions cancels the singularities in the
Yukawa-type factors, this problem is very similar to the exponential potential in one dimension.
The wavefunction and eigenvalue formula are found from (2.13) and (2.14) to be, respectively,

ψ̃(k) = c

(k2 + β2)
(√

m2 + k2 − E
) (4.2)

and

1

v
= 8

∫ ∞

0

k2 dk

(k2 + β2)2
(√

m2 + k2 − E
) . (4.3)

Thus the energy E may be found from (4.3) as a function of the positive parameters {m,β, v}.
Similarly, for the Gauss potential, we have the kernel

V(r, r′) = −v e− 1
2 β(r2+r ′2) v, β > 0. (4.4)

The corresponding wavefunction and eigenvalue formula in this case are given by

ψ̃(k) = c e− 1
2 k2/β

√
m2 + k2 − E

(4.5)
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and

1

v
= 4π

β3

∫ ∞

0

e−k2/βk2 dk√
m2 + k2 − E

. (4.6)

5. The semirelativistic N-boson problem

In this section we consider a system of N identical bosons interacting pairwise in three spatial
dimensions. The Hamiltonian for the system may be written as

H =
N∑

i=1

(
m2 + p2

i

) 1
2 +

N∑
j>i=1

V̂ij , (5.1)

where, for a single particle, the action of the Gauss potential is given by

V̂ ψ(r) = −v

∫
e− β

2 (r2+r ′2)ψ(r′)d3r′, v > 0. (5.2)

We shall consider two distinct approaches. First, we obtain a lower bound to the lowest N-body
energy E with the aid of a scaled one-body problem and secondly we find an upper bound with
the aid of an N-body Gaussian trial wavefunction.

5.1. The lower bound

If we suppose that � is the exact (unknown) N-boson wavefunction, then boson symmetry
implies that E = (�,H�) = (�, h�), where h is a two-body Hamiltonian given by

h = N

2

[(
m2 + p2

1

) 1
2 +

(
m2 + p2

2

) 1
2 + (N − 1)V̂12

]
. (5.3)

If new coordinates for the two-body problem are r = r1 − r2 and ρ = r1 + r2, then the
individual momenta are given by π ± p, and, by using the lemma of [11] to ‘remove’ the
operator π from within expectation values, the two-body operator h may be replaced by H,
where

H = N
[
(m2 + p2)

1
2 + 1

2 (N − 1)V̂
]
. (5.4)

Thus, we conclude that

E = (�,H�) = (�,H�) � E = EL, (5.5)

where E is the bottom of the spectrum of the one-body operator H. By comparing (5.4) with
(4.6), we see that

1

(N − 1)v
= 2π

β3

∫ ∞

0

e−k2/βk2 dk√
m2 + k2 − EL/N

. (5.5a)

Thus, for each choice of the parameters m and β, (5.5a) implies that EL/N is a function of
v(N − 1). In the special case m = β = 1, we write this function as fL so that we have

EL/N = fL(v(N − 1)). (5.5b)

We note the special critical coupling uc defined by f (uc) = 0 is given by v(N − 1)|c =
0.527 485.
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5.2. The upper bound

For a variational upper bound we adopt explicit relative coordinates. Jacobi coordinates may
be defined with the aid of an orthogonal matrix B relating the column vectors of the new [ρi]
and old [ri] coordinates given by [ρi] = B[ri]. The first row of B defines a centre-of-mass
variable ρ1 with every entry 1/

√
N , the second row defines a pair distance ρ2 = (r1 −r2)/

√
2,

and the kth row, k � 2, has the first (k − 1) entries Bki = 1/
√

k(k − 1), the kth entry
Bkk = −√

(k − 1)/k, and the remaining entries are zero. We define the corresponding
momentum variables by [πi] = (B−1)t[pi] = B[pi]. The trial wavefunction we use is given
by

�(ρ2, ρ3, . . . , ρN) = C exp

(
−α

2

N∑
i=2

ρ2
i

)
= C

N∏
i=2

φ(ρi), (5.6)

where α > 0 and C is a normalization constant. This function is symmetric in the individual
position coordinates {ri}Ni=1 and also in the (N − 1) relative coordinates {ρi}Ni=2; meanwhile it
has the unique factoring property shown. These facts enable us [11] to express the expectation
of the full Hamiltonian H in the form

E � (�,H�) = N
(
φ,

(
(m2 + 2λp2)

1
2 + (N − 1)V̂

)
φ
)
, (5.7)

where λ = (N − 1)/N , the potential operator V̂ has the Gauss kernel (4.4), and α is to be
used as a variational parameter. We, therefore, obtain the following expression for the upper
bound EU in the special case m = β = 1:

E

N
� EU

N
=

(
2

π

) 1
2

min
s>0

[
g(s2)

s
− 8vπ2 (2λs2)

3
2

(1 + 4λs2)3

]
, (5.8a)

where the monotone function g is given by

g(x) =
∫ ∞

−∞
e−t2

[2x + t2]
1
2 t2 dt = x exK1(x).

In this last expression, Kν(x) is a modified Bessel function of the second kind [12]. The
result of the minimization in (5.8a) yields EU/N as a function fU of (N − 1)v and λ, where
1
2 � λ � 1. We have

EU/N = fU(v(N − 1), λ). (5.8b)

Thus, we obtain a different upper-bound curve for each λ = (N − 1)/N . These curves do
not intersect. In figure 3, we exhibit the lower curve fL(v(N − 1)), valid for all N, the upper
curve fU

(
v(N − 1), 1

2

)
, for N = 2, and the upper curve fU(v(N − 1), 1), for N = ∞. For

the case N = 2, the general lower (all N � 2) and particular upper bounds (N = 2) are so
close that they are indistinguishable on the graph: we have, for example, fL(1) = −2.568 44
and fU

(
1, 1

2

) = −2.5651 approximately. Thus the scale-optimized Gaussian trial function is
very effective for all N, and particularly so for N = 2. The apparent straightness of the energy
curves can perhaps be understood by reasoning such as the following: for the lower bound
(5.5a), the Gaussian in the integrand decays rapidly to zero, thus the mean-value theorem tells
us, for a given v, that (N − 1)v = A − B(EL/N); it remains, of course, to explain why A and
B vary very slowly with v. However, with exact analytical results available (for both bounds),
we do not have to look for more analytical approximations.
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Figure 3. Upper and lower bounds for E/N against (N − 1)v for N identical bosons interacting

via the Gauss pair potential V(r, r ′) = −e− β
2 (r2+r ′2). The lower curve (L) is for N = 2 and the

upper curve (U) is for N = ∞; the curves for 2 < N < ∞ lie between these two.

6. Conclusion

We have shown that exact solutions can be found to semirelativistic eigenvalue problems
when the potential has a kernel that is a sum of separable terms. This immediately extends,
of course, to the wider class of L2 kernels. It may be possible to use such exact solutions
to approximate the spectra generated by local potentials. The non-relativistic many-body
problem with non-local potentials has already been studied [9] and the present paper extends
these results to the corresponding semirelativistic case. We have obtained tight bounds for the
local semirelativistic N-body problem with local harmonic-oscillator potentials V (r) = vr2,
and somewhat weaker bounds for convex transformations g(r2) of the oscillator [10]. The
work reported in the present paper will no doubt help us to extend these semirelativistic many-
body results to wider classes of potentials. It is very helpful when the lower bound itself,
which is derived from a scaled one-body problem, can be found exactly. Improvements in the
general lower bound await a treatment based on Jacobi relative coordinates; this has already
been achieved in particular for the oscillator; the search for an improved general lower bound
can now benefit from a non-oscillator test model for which there is also an accurate variational
upper bound.
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