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It is shown that the discrete spectrum of Schrodinger Hamiltonians of the form 
H= - A+vf may be represented by the semiclassical expression E,[ 
= min,,s {Kk{)( r) + vf(r)}. The K functions are found to be invariant with 
respect to coupling and shifts: K(Af+B)=K(f). For pure power laws, 
f(r) =w-‘(qh? and the log potential, they are also invariant with respect to 
scale, and have the simple forms (P,J q)/r)2 and ( L,Jr)2, respectively. K 
functions are also derived for sech-squared and HulthCn potentials. If f=g(h), 
where g is a smooth transformation, then the envelope approximation is 
expressed in terms of K by the relation KCn cKCh). When the transformation g 
has definite convexity, then the approximation immediately yields eigenvalue 
bounds for all n and I. The theory is used to prove the log-power theorem 
L,,l = P,/(O), which, in turn, generates a simple eigenvalue formula for the log 
potential. 

I. INTRODUCTION 

We study Schrodinger Hamiltonians of the form 

H= - A+vf(r), (1.1) 

where f is the shape of a central potential in RN, and v is a positive coupling parameter. We 
consider attractive potentials with the property that, for v sufficiently large, the Hamiltonian H 
has some discrete eigenvalues En= F,( v). The eigenvalues are ordered so that E&E,,, for 
m>n, n= 1,2,3,..., where the index n labels the eigenvalues corresponding to the states in a 
given angular-momentum subspace. For definiteness, we shall now adopt a notation suitable for 
R3, in which Z>O denotes the usual orbital angular-momentum quantum number. 

The term spectral geometry’ refers to the study of the geometrical relationship between the 
potential shape f and the set {F,t} of energy trajectories generated by J: If the potential has 
more than one parameter, then, instead of curves, one might have to work with more general 
energy hypersurfaces. The central-field eigenvalue problem 

Y(r’)=PP(r’), (1.2) 

which has the three physical parameters, m, V,, and a, may be reduced to the dimensionless 
form H$ = E$ by means of the scale changes 

r=%, $(r) =Y(r’), 
2m Vs2 2m ga2 

v=~, , E=-fi2. (1.3) 

Therefore, to this level of generality, it is sufficient to develop our geometrical theory in terms 
of the dimensionless one-parameter Hamiltonian H given by Rq. ( 1.1) . 

An essential feature of our approach to spectral geometry is the reformulation of the 
standard min-max characterization2-5 of discrete Schrodinger eigenvalues by means of kinetic 
potentials.6?7 We shall summarize this theory briefly in Sec. II. The principal idea is that the 
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minimization of the Rayleigh quotient ($,H$)/($,$) is performed in two stages. The first 
stage involves only the shape f of the potential and leads to a family { T,J of kinetic potentials 
~,Js). The second stage begins with a kinetic potential ~,Js) and yields the corresponding 
eigenvalue E,,l as the outcome of the semiclassical optimization 

&=FnAv) =minCs+dnh)l, (1.4) 
s>o 

in which the variable s > 0 represents the kinetic energy. The point of all this is that the kinetic 
potentials behave very nicely under both smooth transformations and sums. The present paper 
concerns developments in the transformational aspect of the theory. 

If a potential f is a smooth transformatio_n g of a soluble potential h, so that f(r) =g(h( r)), 
then the corresponding kinetic potentials { f nl}, which are ordered like the eigenvalues, trans- 
form approximately in the same way as the potentials. That is to say, we have the envelope 
approximation 

fd4 -d%zW, (1.5) 

where, if g is convex, we get lower bounds ( z = >) for all n and 1, and if g is concave we get 
upper bounds ( z = < ) for all n and 1. This result has6 a very interesting geometrical 
interpretation in terms of envelopes: If we think of f =g(h) as a function of h, then each 
tangent line to the graph of g is a shifted h-potential which is soluble and has a known energy 
trajectory; the enveZope of this family of trajectories is precisely the trajectory we get when the 
right side of Rq. ( 1.5) is substituted in Eq. (1.4). Because of this geometrical interpretation we 
sometimes refer to these results collectively as ‘the method of potential envelopes’ or ‘the 
envelope approximation.’ 

Our first principal new result, which we derive in Sec. III, is that there exist changes of 
variable s--t r defined by the equations T,,;(s) = f(r) so that the minimization ( 1.4)) which 
yields the eigenvalues, can be expressed in the form 

E,~=F,~(v)=min{K~~(r)+vf(r)}. 
r>O 

(1.6) 

There are a number of advantages to this new formulation. The K functions are invariant with 
respect to the coupling and shifts of the potential: thus K(Af+B) =@. For pure power-law 
potentials f(r) = sgn( q) P, they are also invariant under scale changes: the K functions in this 
case have the simple form Kk{’ (r) = (P,1(q)/r)2, where the P,/(q) are precisely the functions 
(of q) which emerged naturally in our earlier study’ of the spectral geometry of the power-law 
potentials. We also derive some explicit K functions for the log, the sech-squared, and the 
Hulthen potentials. For the log potential, we obtain K$‘*‘(r) = ( L,Jr)2, where the Lnl are 
constants. 

Another, interesting invariance property of the K functions is to do specifically with the 
envelope approximation. If f =g( h), then, in terms of the new formulation, the envelope 
approximation ( 1.5 ) becomes simply 

K’f’&p) , 

and the corresponding expression for the eigenvalues is therefore given by 

E,,l=F,,l(v) -rnmin{&~)(r) +vf (r)}. 
c-0 

(1.8) 

If the transformation g has detinite convexity, then the approximation ( 1.8) immediately yields 
energy bounds for all the eigenvalues.7 
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This new formulation of envelope theory enables us to prove the log-power theorem which 
states that L,l = P,/(O). This result reveals the intimate relationship which exists between the 
spectra generated by the power-law potentials and the log potential. Consequently, we are able 
to characterize completely the complicated behavior of the power-law eigenvalues E$) near 
q=O. Conversely, the approximate formula we obtained in Ref. 1 for P,,t(q) can now be used 
to provide a simple expression for the eigenvalues associated with the log potential. 

II. SPECTRAL GEOMETRY AND KINETIC POTENTIALS 

For definiteness, we present this brief summary of spectral geometry for N=3 spatial 
dimensions; it will be clear from this special case how to obtain the corresponding results for 
other values of N. In the abstract theory2-5 of Schrodinger operators H=K+ V one thinks of 
the potential V= vf as a perturbation of the positive-definite kinetic energy operator w= -A. 
If gn is an n-dimensional subspace of L2(W3) contained in the domain of H and contained in 
the angular-momentum subspace labeled by the spherical harmonic y;” then, we can define the 
nth eigenvalue E,t (n= 1,2,...) by the min-max expression: 

E,[=inf sup ($,H$). 
9, h9” 

ll~ll=’ 

(2.1) 

Kinetic potentials arise when one effects this minimization in two stages. At the first stage, we 
scale the linear space 9’n so that we can fix the value of the mean kinetic energy ($,K$) =s, 
then we minimize over all scales, that is to say, over all values of s> 0. Thus if 9,, 
=Span (&)y=i, and d4i(X) =#/(a~), a>O, then we define 

(2.2) 

and 

‘@p u zsn. (2.3) 
o>o 

Of course, this union of scaled linear spaces is not itself a linear space. Now we are in a position 
to define kinetic potentials by the expression: 

.L,w =;n ,“uJ- ($,fJt). (2.4) 

d!ikL 

A kinetic potential (a contraction of the term minimum mean isokinetic potential) represents 
the result of min-max applied to the potential shupef: the coupling parameter v is not included. 
Only in the final stage of minimization do we recover the eigenvalue in terms of v, thus 

&=F,I(v) =min{s+v~nl(s)). (2.5) 
s>o 

It is not difficult to show697 that the kinetic potentials are convex, that they are ordered like the 
eigenvalues, that is to say, F > Gjf > g, and that they obey the scaling rule: 

Af(r/b)+B+Ar(sb2)+B, A,b>O. (2.6) 

We can use calculus to invert Eq. (2.5) and express kinetic potentials in terms of the trajectory 
functions. Thus from Rq. (2.5) we have the transformation pairs: 
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s=Fdv) -vF;,(vL ?,A) =F;,(v), (2.7) 

and 

v--l= -&(s), v-‘F,/(v) =TJs) -s&(s). (2.8) 

Fortunately, because of Eq. (2.7), we do not have to use the abstract definition (2.4) in order 
to construct component kinetic potentials from known trajectory functions. Meanwhile, the 
transformation (2.8) allows us to reconstruct the energy spectrum from the kinetic potentials. 

In the case of power-law potentials with shapes 

f(r) =sgn(q)fl, q> - 1, 420, (2.9) 

elementary scaling arguments’ tell us that the energy trajectories are given by 

F;T) (v) = E;~)3’(*+2), (2.10) 

where ~$7’ = I;:?’ ( 1). It follows from Eq. (2.7) that the corresponding kinetic potentials are 
given by 

&(s> = (2/q) \qEy/(2+q) 1 (q+2)‘2S-q’2. (2.11) 

The formulas for the well-known examples of the Coulomb potential and the harmonic oscil- 
lator are therefore given, respectively, by 

f(r)=-r-‘+F$l)(v)=- 
v2 - s1/2 

4(n+Z)Z’f”(s)=-(n+Z) (2.12) 

and 

(2.13) 

We note that, for the harmonic oscillator and the sech-squared potential (discussed below), we 
obtain the corresponding eigenvalue formulas for the case of one spatial dimension if we set 
I=0 and replace 2n by n. 

The S states of the sech-squared’ and HulthCn’ potentials have the following respective 
eigenvalues, and corresponding kinetic potentials given by Eq. (2.7) : 

f(r) = -ssech’(r) -+F&v) = -[(v+ l/4)‘“- (2n+ 1/2)12, (2.14) 

-&0(s> = 
-29 

[(s+y) 2 1 ssl n+s+Y’ v=2n(2n-1); (2.15) 

and 

f(r) = ---+ ,ril F,(v)= 
(v-n2)2 

4n2 , (2.16) 

(2.17) 

J. Math. Phys., Vol. 34, No. 7, July 1993 

Downloaded 30 Nov 2006 to 130.216.33.81. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Richard L. Hall: Envelope theory in spectral geometry 2783 

Another potential of interest is the log potential. In this case we have6 for the eigenvalues of the 
Hamiltonian H= - A + u In(r) : 

f(r) =ln(r> +F,l(v) = -40 ln(u/Q, (2.18) 

+f,&) =Ef/---$ln(2es), (2.19) 

where 

u,l=ezEi and E& F,,/( 1) . (2.20) 

These expressions look very different from the power-law results which we found above. 
However, we shall see below, in the new formulation of the theory, the log potential takes its 
natural place ‘between’ the Coulomb and linear potentials. 

III. SPECTRAL GEOMETRY AND K FUNCTIONS 

The relationship between the trajectory functions F and the kinetic potentialsl expressed 
either by the minimization (2.5) or by the differential transformation pairs (2.7) and (2.8), is 
essentially a Legendre transformation. lo This aspect of the relationship is most transparent if, 
instead of F(v), we use G(u) =uF( l/u), as we did in Ref. 6. 

However, we now explore a different idea. At the expense of some complication of the 
expression for the kinetic energy in the semiclassical form (2.5)) we try to replace the kinetic 
poten$alTby the potentialfitself. This is possible in general because we know from Eq. (2.8) 
that f is monotone decreasing, and consequently invertible. We can therefore parametrize 
T,Js) in terms of the variable r by the relation 

xd(s;=f(r), (3.1) 

and invert this to give what we call the K function K,,, U) (relative to fl, that is to say 

s=(&‘oj-)(r)=K;p(r). (3.2) 

It follows from this definition and Eq. (2.6) that the K functions obey the the rule: 

f(r)-*K(r)jdf(r/b)+B-t(l/b2)K(r/b), A,b>O. (3.3) 

Thus K functions are generally independent of coupling and potential shifts. The eigenvalues 
are recovered from the K functions by the expression 

&=F,dv) =finCKk{‘(d +uf(r>l. (3.4) 
00 

If f is monotone we can change variables and rewrite Eq. (3.4) as 

J%I=F,I(u) =minC&‘(f 1 +vfl. (3.5) 
f 

With the optimization in this form, the reason for the minimum becomes clear: 7;’ (f) is a 
convex function ofJ: We can see this by the following argument. Letp=T-‘. Thenp@(s))=s, 
and p’cf(s))y (s) = 1: therefore p’, like 7, is negative. Differentiating again, we find 

P”a(s))~(s))2+P’~(~)l~(s) =O. (3.6) 

Hence p=y-‘, like3 is convex. 
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IV. POWER-LAW POTENTIALS 

From Eqs. (2.11) and (3.2) we tind that, for the power-law potentials f(r) =sgn(q> P, 
the K functions all have the same form, namely, 

K:?(r) =(f’,thW~)2. (4.1) 

From the general transformation properties (3.3)) or from the fact that, for power-law poten- 
tials, scale and coupling are interchangeable, it follows that this particular family of K functions 
are scale invariant: that is to say, f(r) and f( r/b) both have identical K functions. A simple 
computation yields the following general expression for the constants, 

P,f( q) = 1 Ey 1 (2+q)‘2q [&]*‘q[gy’2, q=i@. (4.2) 

It is convenient to force continuity at q=O by defining 

Pd(O) =limPd(q). 
q-0 

(4.3) 

This definition is possible because, as we shall shortly see, the right side of Fq (4.3) exists and 
equals L,,, the corresponding constant for the log potential. For q#O, this is not the lirst time 
that we have met these P coefficients. In fact, by serendipitous coincidence the P,&q) are 
precisely the functions (of q) which emerged naturally in our earlier study’ of the spectral 
geometry of the power-law potentials. There, we represented one power as a transformation of 
another, and, from a differential analysis of this relationship, we proved that the functions 
P(q), unlike the energies E(q) themselves, were smooth and monotone (increasing) in q. The 
P functions have now emerged again as the coefficients in the power-law special case of a 
general geometric theory of the Schrodinger spectrum. 

For later reference we note that for the Coulomb potential (q= - 1) and the harmonic 
oscillator (q = 2)) we have, respectively, 

P,[(-l)=(n+z), P,/(2)=(2n+z-l/2). (4.4) 

A simple but accurate interpolation formula which is exact for q = - 1 and q = 2 and all n and 
I is given’ by 

P&l) = (n+ZY+@p [ (,,+z+ (~+z)q”~, 
I 

where a= 3.239 692 has been chosen to fit precisely one more value, namely, P1,( 1). 

V. THE LOG POTENTIAL 

In the present formulation of the theory, the log potential assumes its ‘natural’ place in the 
same category as the power-law potentials. We find, from Eqs. (2.19) and (3.2), 

f(r) =ln(r) +tinp(r) = ( L,/r)2, (5.1) 

where the constants L,,l are given in terms of the log-potential eigenvalues E$ by 

Ln,= ; 
( 1 

l/2 

e% (5.2) 
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TABLE I. The 6rst 30 eigenvalues E,“I of H= -A+v In(r), with v= 1, provided by the simple formula \5.5), along 
with accurate values (in parentheses) found by direct numerical integration. For u#l, we have E,,, = p ln(v/v,,), 
where v& = 2 EL a/. 

I n=l n=2 tl=3 n=4 n=5 

0 1.046 (1.044) 1.847 (1.847) 2.289 (2.290) 2.594 (2.596) 2.828 (2.830) 
1 1.633 (1.641) 2.144 (2.151) 2.486 (2.491) 2.742 (2.746) 2.946 (2.949) 
2 2.006 (2.013) 2.378 (2.387) 2.655 (2.663) 2.874 (2.880) 3.054 (3.059) 
3 2.277 (2.284) 2.570 (2.580) 2.802 (2.810) 2.992 (2.999) 3.152 (3.159) 
4 2.491 (2.497) 2.732 (2.742) 2.930 (2.940) 3.098 (3.107) 3.243 (3.251) 
5 2.667 (2.673) 2.872 (2.881) 3.045 (3.055) 3.195 (3.205) 3.327 (3.335) 

As with the power-law potentials, it follows from Eq. (3.3) that, in addition to the general 
invariance with respect to coupling and potential shifts, the K functions for the log potential are 
also invariant with respect to spatial scaling. The notion that the log potential lies ‘between’ the 
Coulomb and the linear potential can now immediately be illustrated by the inequalities: 

Plo( - 1) = 1 < Llo= 1.218 < Plo( 1) = 1.376, (5.3) 

in which the eigenvalues for the log and linear potential have been taken from the tables of Ref. 
7. Since we know’ that the coefficients P,,l( q) are monotone increasing in q, it is clear from Rq. 
(5.3) that Plo(q) = Llo for some qc [ - 1, 11. We now know that such an intimate relationship 
between the log and the power-law Schriidinger spectra is generally true. Indeed in Sec. VIII 
we use spectral geometry to prove the following. 

Log-Power Theorem: 

P,I(O) =&I. (5.4) 

By substituting our interpolation formula (4.5) for PJq) in Eq. (5.4) we immediately obtain 
from Eq. (5.2) the following approximate formula for the log-potential eigenvalues: 

Ei=f (l+ln(2))+: In 5 [2(n+Z)“+ (2n+Z- l/2)“] , (5.5) 

in which a=3.239 692. This simple formula gives the the first 30 eigenvalues, n<5, 1~5, with 
error less than l%, as is shown in Table I. 

VI. THE HULTHkN AND SECH-SQUARED POTENTIALS 

For the S states of the HulthCn potential we have from Rqs. (2.17) and (3.2) 

For small r, this K function approaches n’/?, in agreement with the Coulomb result, (4.1) and 
(4.4), for Z=O. 

Meanwhile, in one spatial dimension we have, for the harmonic oscillator 

f(x) =x2+Kif)(x) = (n- 1/2)2/x2. 

For the sech-squared potential we obtain from Eqs. (2.15) and (3.2) 

(6.2) 
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f(x) = -sech2(x) +K(f)(x) = 
1 n(n-1) 

n Glh22X+ sinh2x ’ 

where n= 1,2,3 ,... . Since the sech-squared shape is like a (shifted) harmonic oscillator for 
small x, it is not surprising that the formula for Kin(x) approaches the expression on the right 
side of Eq. (6.2), as x -0. We note that we obtain the corresponding formulas for the S states 
(Z=O) in three spatial dimensions if we replace n by 2n in Eqs. (6.2) and (6.3). 

VII. ENVELOPE THEORY AND THE TRANSFORMATION INVARIANCE OF K 

If the potential shape f is a transformation g(h) of a monotone potential h, then, as we 
explained in the Introduction, we define the envelope approximation (relative to the basis h) 
to mean precisely 

Lw -AL(s)). (7.1) 

The K function corresponding to the envelope approximation is very interesting. By substitut- 
ing the right side of Eq. (7.1) in the definition (3.2) of the K functions we obtain 

K;{‘- (go&) -‘o(goh) =&‘oh=K;;). (7.2) 

In terms of K functions, therefore, the envelope approximation may be expressed in the form, 

f=g(h) +Kcf),Kch). (7.3) 

If we wish to be sure about energy bounds, then we must first study the transformation function 
g to determine its convexity. Once this analysis is completed, the function g can be ignored 
since the eigenvalue approximations are given by the expression 

E,,z=F,,z(u) -ti{K$)(r) +vf (r)) , (7.4) 
00 

in which g no longer appears. This expression yields upper or lower bounds depending, re- 
spectively, whether g is concave or convex. It is easy to remember this result because, for 
example, if g is concave, then the tangents to f =g(h) lie above J; and we therefore obtain 
upper bounds; similarly it is clear that we get lower bounds in the convex case. 

In order to analyze the nature of the optimization we can reparametrize in terms of h and 
obtain, instead of Eq. (7.4), the expression 

Enr=F,r(U) -~C&‘W +w(h)l. 
h 

(7.5) 

We know by the argument given in Sec. III that y:,-,‘(h) is convex. If g is also convex, then the 
critical point is indeed a minimum. If g is concave, there may be critical points of different 
types: however, in this case, we obtain an upper energy bound; consequently the minimum is 
again required because we would wish to choose the best such bound. 

VIII. PROOF OF THE LOG-POWER THEOREM 

We prove this theorem by using spectral geometry. We first represent the power-law 
potentials as smooth transformations of the log potential. Thus 

sfP(q)fl=f (r) =g(h(r)), h(r) =ln(r), r>O. (8.1) 

Consequently, 
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g(h) =sgn(q)eqh. (8.2) 

Since g’( h) = 14 1 e@>O, it follows that g is monotone increasing. A further differentiation yields 

g”(h)=qjq]eqh. (8.3) 

Thus, the transformation function g is convex (leading to lower energy bounds) if q > 0, and g 
is concave (leading to upper bounds) if q < 0. 

We first consider the convex case q > 0. We have from Eqs. (4.1), (5.1), and (7.3 ) 

The left side of Eq. (8.4) yields the exact energy, whereas, because g is convex, the right side 
yields a lower bound. Hence we have: 

P2,rbz) :t --T- 1 +sgdq)P I =EymiIl T+sgrl(q)rp . 
r>O I L2,l 

1 
(8.5) 

Since the minima in Eq. (8.5) are also monotone (increasing) in the positive constants mul- 
tiplying the kinetic-energy factor t-*, we have proved the inequality 

L,I<P,,(qh q>o. (8.6) 

An exactly similar argument for q < 0 leads to the complementary result 

Pdq) <L,I, 60. (8.7) 

These two inequalities and the monotony of P,,(q), as a function of q, proved in Ref. 1, 
establish the log-power theorem 

limp,z(q) = L”l. 
q-0 

(8.8) 

0 

From the standpoint of the eigenvalues, this theorem, which relates the Schrodinger spec- 
tra generated by the log and the power-law potentials, appears deeply buried. Indeed, the 
eigenvalues E$) are discontinuous in q and approach f 1 as q approaches zero, respectively, 
from the left or right. Meanwhile the eigenvalues Ei start at Efo ( N 1.044) and increase with 
n and I without bound. 

We can now describe how the power-law eigenvalues depend on q near q=O. We find from 
Eqs. (4.2) and (8.8) 

(8.9) 

where the function y is defined by y(x) = Ix I X. This curious function has limit 1 as x -0. 
Consequently, as we expect, the right side of Eq. (8.9) approaches 1 as q+O. However, the 
derivative r’(X>=Y(X){l+lnlxl} approaches -CO as x -0. Consequently, the entire family 
of graphs of I E(,‘f) I pass through the point (q, I E I ) = (0,l) with infinite slopes. Illustrations of 
the graphs of the absolute values IEky) I, as functions of q, may be found in Ref. 1. The 
log-power theorem has enabled us to complete the characterization of the complicated behavior 
of these functions near q=O. 
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IX. CONCLUSION 

In this paper we have reformulated our theory of spectral geometry in terms of K functions. 
The new representation, 

E,I=F,I(v) =min{Khp(r) +uf(r>), 
r>O 

(9.1) 

for the discrete S&&linger spectrum has a number of advantages over the earlier expression 
(2.5) in terms of kinetic potentials. Now, the kinetic energy is represented by a positive K 
function with a pole at zero; meanwhile, the potential-energy function in the semiclassical 
expression is identical to the potential in Schrodinger’s equation. The balance between kinetic 
and potential energies, which yields the spectrum, is perhaps easier to study when it is ex- 
pressed in this way. 

In principle, a new complication has now been introduced, namely, the dependence of the 
K functions on the potential. The invariance of K with respect to coupling, spatial translations, 
and additive shifts of the potential certainly reduces the impact of this shortcoming. However, 
a much more important and attractive aspect of the new formulation is the transformation 
invariance K(gth)l = tih) of the envelope approximation. For a given fixed envelope basis h, this 
invariance frees the K function of any residual potential dependence and allows the semiclas- 
sical form to exhibit approximately how features of the potential shape f flow through to the 
Schradiiger spectrum it generates. 

In Ref. 1 we sought to understand how the eigenvalues &J$) corresponding to pure power- 
law potentials depended on the power q. The principal result of that article was the proof that 
P,l(q) is a monotone increasing function of q. The new formulation of envelope theory has 
made possible the discovery of the log-power theorem, L,[ = P,JO). This result, relating two 
seemingly different quantum-mechanical problems, is certainly interesting in itself, and it al- 
lows us to characterize the complicated behavior of the eigenvalues E’,f’ near q=O. Conversely, 
we can now use the interpolation for P,/(q), which we obtained in Ref. 1, to provide a simple 
eigenvalue formula for the log potential. 
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