
May 21, 2002 16:16 WSPC/139-IJMPA 01052

International Journal of Modern Physics A, Vol. 17, No. 14 (2002) 1931–1951
c© World Scientific Publishing Company

DISCRETE SPECTRA OF SEMIRELATIVISTIC HAMILTONIANS

FROM ENVELOPE THEORY

RICHARD L. HALL

Department of Mathematics and Statistics, Concordia University,
1455 de Maisonneuve Boulevard West, Montréal, Québec, H3G 1M8, Canada

rhall@mathstat.concordia.ca

WOLFGANG LUCHA
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We analyze the (discrete) spectrum of the semirelativistic “spinless-Salpeter” Hamil-
tonian

H = β
√
m2 + p2 + V (r) , β > 0 ,

where V (r) is an attractive, spherically symmetric potential in three dimensions. In order
to locate the eigenvalues of H, we extend the “envelope theory,” originally formulated
only for nonrelativistic Schrödinger operators, to the case of Hamiltonians involving the
relativistic kinetic-energy operator. If V (r) is a convex transformation of the Coulomb
potential −1/r and a concave transformation of the harmonic-oscillator potential r2,
both upper and lower bounds on the discrete eigenvalues of H can be constructed,
which may all be expressed in the form

E = min
r>0

β
√
m2 +

P 2

r2
+ V (r)


for suitable values of the numbers P here provided. At the critical point, the relative
growth to the Coulomb potential h(r) = −1/r must be bounded by dV/dh < 2β/π.

Keywords: Relativistic wave equations; bound states; discrete spectrum; energy eigen-
values; Bethe–Salpeter formalism; quantum theory.
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1. Introduction

We study the semirelativistic (so-called “spinless-Salpeter”) Hamiltonian

H = β
√
m2 + p2 + V (r) , β > 0 , (1)

in which V (r) is a central potential in three dimensions. The eigenvalue equation of

this operator is called the “spinless Salpeter equation.” This equation of motion

arises as a well-defined standard approximation to the Bethe–Salpeter formalism1

for the description of bound states within a (relativistic) quantum field theory and

is arrived at by the following simplifying steps:

(1) Eliminate all timelike variables by assuming the Bethe–Salpeter kernel that

describes the interactions between the bound-state constituents to be static,

i.e. instantaneous; the result of this reduction step is called the “instantaneous

Bethe–Salpeter equation” or the “Salpeter equation.”2

(2) Neglect the spin of the bound-state constituents, assume the Bethe–Salpeter

kernel to be of convolution type (as is frequently the case), and consider merely

positive-energy solutions ψ, in order to arrive at the so-called “spinless Salpeter

equation” Hψ = Eψ, with a Hamiltonian H of the form (1). (For two particles,

this form of the Hamiltonian H holds only for equal masses m of the bound-

state constituents.)

(For a more detailed account of the reduction of the Bethe–Salpeter equation to the

spinless Salpeter equation, consult, e.g. the introductory sections of Refs. 3 and 4.)

This wave equation describes the bound states of spin-zero particles (scalar bosons)

as well as the spin-averaged spectra of the bound states of fermions.

In this paper we consider potentials which are at the same time convex trans-

formations V (r) = g(h(r)) of the Coulomb potential h(r) = −1/r and concave

transformations of the harmonic-oscillator potential h(r) = r2. The reason for this

is that spectral information is known for these two “basis” potentials h(r). Thus

the class of potentials is those V (r) that have a dual representation

V (r) = g(1)

(
−1

r

)
= g(2)(r2) ,

in which g(1) is convex (g(1)′′ > 0) and g(2) is concave (g(2)′′ < 0). An example of a

potential in this class is

V (r) = −c1
r

+ c2 ln r + c3r + c4r
2 , (2)

where the coefficients {ci} are not negative and are not all zero. Thus tangent lines

to the transformation function g(h) are of the form ah+ b and are either Coulomb

potentials lying below V , or harmonic-oscillator potentials lying above V . This

geometrical idea is the basis for our approach to the spectral problem posed by

H. We shall consider applications of this idea to the (nonrelativistic) Schrödinger

problem, the relativistic kinetic-energy operator, and the full Salpeter Hamiltonian

in Secs. 3–5, respectively. We shall show that all our upper and lower bounds on
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the eigenvalues of the semirelativistic Salpeter Hamiltonian H of Eq. (1) can be

expressed in the compact form

E ≈ min
r>0

[
β

√
m2 +

P 2

r2
+ V (r)

]
,

where P is a constant for each bound, and a sign of approximate equality is used

to indicate that, for definite convexity of g(h), the envelope theory yields lower

bounds for convex g(h) and upper bounds for concave g(h). The main purpose of

the present considerations is to establish the general envelope formalism in terms

of which such bounds can be proved, and to determine the appropriate values of P .

It is fundamental to our method that we first know something about the spec-

trum of H in those cases where V (r) is one of the basis potentials, i.e. the Coulomb

and the harmonic oscillator. These two spectra are discussed in Sec. 2 below. In

Sec. 6 we look at the example of the Coulomb-plus-linear potential.

2. The Coulomb and Harmonic-Oscillator Potentials

2.1. Scaling behavior

Since the two basis potentials are both pure powers, it is helpful first to determine

what can be learnt about the corresponding eigenvalues by the use of standard

scaling arguments. By employing a wave function φ(cr) depending on a scale vari-

able c > 0, we find the following scaling rule for the eigenvalues corresponding to

attractive pure power potentials v sgn(q)rq . The Hamiltonian

H = β
√
m2 + p2 + v sgn(q)rq

has the (energy) eigenvalues E(v, β,m), where

E(v, β,m) = βmE

(
v

βm1+q
, 1, 1

)
, q ≥ −1 .

The scaling behavior described by the above formula allows us to consider the

one-particle, unit-mass special case m = β = 1 initially, that is to say, to work

w.l.o.g. with the operator

H =
√

1 + p2 + v sgn(q)rq .

2.2. Coulomb potential

In the case of the Coulomb potential V (r) = −v/r it is well known5 that the

Hamiltonian H has a Friedrichs extension provided the coupling constant v is not

too large. Specifically, it is necessary in this case that v is smaller than a critical

value vc of the coupling constant:

v < vc =
2

π
.
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With this restriction, a lower bound to the bottom of the spectrum is provided by

Herbst’s formula

E0 ≥
√

1− (σv)2 , σ ≡ π

2
. (3)

By comparing the spinless Salpeter problem to the corresponding Klein–Gordon

equation, Martin and Roy6 have shown that if the coupling constant is further

restricted by v < 1
2 , then an improved lower bound is provided by the expression

E0 ≥

√
1 +
√

1− 4v2

2
, v <

1

2
. (4)

It turns out that our lower-bound theory has a simpler form when the Coulomb

eigenvalue bound has the form of Eq. (3) rather than that of Eq. (4). For this

reason, we have derived from Eq. (4), by rather elementary methods, a new family

of Coulomb bounds. To this end, we begin with the ansatz√
1 +
√

1− 4v2

2
≥
√

1− (σv)2

and look for conditions under which it becomes true. Since both sides are positive,

we may square the ansatz and rearrange to yield

v2 ≤ σ2 − 1

σ4
.

Meanwhile from (4) we must always satisfy v < 1
2 . This establishes the inequality

we will need, namely,

E0 ≥
√

1− (σv)2 , v ≤
√
σ2 − 1

σ2
<

1

2
. (5)

Examples are

σ2 = 2 , v ≤ 1

2
;

σ2 =
3

2
(3−

√
5) ≈ 1.145898 , v ≤ 1

3
;

σ2 = 8− 4
√

3 ≈ 1.071797 , v ≤ 1

4
.

All these (lower) bounds are slightly weaker than the Martin–Roy bound (4) but

above the Herbst bound (3). We note that these functions of the coupling constant

v are all monotone and concave.

2.3. Harmonic-oscillator potential

In the case of the harmonic-oscillator potential, i.e. V (r) = vr2, much more is

known.7,8 In momentum-space representation the operator p becomes a c-variable

and thus, from the spectral point of view, the Hamiltonian

H =
√

1 + p2 + vr2
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is equivalent to the Schrödinger operator

H = −v∆ +
√

1 + r2 . (6)

Since the potential in this operator increases without bound, we know9 that the

spectrum of this operator is entirely discrete. We call its eigenvalues En`(v), n =

1, 2, . . . , ` = 0, 1, . . . , where n counts the radial states in each angular-momentum

subspace labeled by `. In what follows we shall either approximate the eigenvalues

En`(v) analytically or presume that they are known numerically. The concavity of

nonrelativistic Schrödinger energy eigenvalues has been discussed in Refs. 10 and

11. Theorem 2 of Ref. 12 establishes concavity for the ground state; the same proof

can be applied to states which are (1) in the subspace corresponding to angular

momentum ` and (2) orthogonal to the first n − 1 exact energy eigenstates in

this subspace. This establishes concavity also for all the higher Schrödinger energy

eigenvalues. Thus the eigenvalues En`(v), regarded as functions of the coupling

parameter v, are concave.

2.4. The spectral comparison theorem

For the class of interaction potentials given by (2) with the coefficient of the Coulom-

bic term satisfying the constraint

lim
r→0

r2V ′(r) <
2β

π
,

the semirelativistic Salpeter Hamiltonian H is bounded below and is essentially self-

adjoint.5 Consequently, the discrete spectrum of H is characterized variationally9

and it follows immediately from this that, if we compare two such Hamiltonians

H having the potentials V (1)(r) and V (2)(r), respectively, and we know that

V (1)(r) < V (2)(r), then we may conclude that the corresponding discrete eigen-

values En` satisfy the inequalities E
(1)
n` < E

(2)
n` . We shall refer to this fundamental

result as the “spectral comparison theorem.” In the more common case of non-

relativistic dynamics, i.e. for a (nonrelativistic) kinetic term of the form βp2/2m in

the Hamiltonian H, a constraint similar to the above would hold for the coefficient

of a possible additional (attractive) −1/r2 term in the potential V (r).

3. Envelope Representations for Schrödinger Operators

We distinguish a potential V (r) = vf(r) from its shape f(r), where the positive

parameter v is often called the “coupling constant.” The idea behind envelope

representations12,13 is suggested by the question: if one potential f(r) can be written

as a smooth transformation f(r) = g(h(r)) of another potential h(r), what spectral

relationship might this induce? We consider potential shapes that support at least

one discrete eigenvalue for sufficiently large values of the coupling v and suppose for

the sake of definiteness that the lowest eigenvalue of −∆ + vh(r) is given by H(v)

and that of −∆ + vf(r) by F (v). If the transformation function g(h) is smooth,
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then each tangent to g is an affine transformation of the “envelope basis” h of the

form f (t)(r) = a(t)h(r) + b(t), where r = t is the point of contact. The coefficients

a(t) and b(t) are obtained by demanding that the “tangential potential” f (t)(r) and

its derivative agree with f(r) at the point of contact r = t. Thus we have

a(t) =
f ′(t)

h′(t)
, b(t) = f(t)− a(t)h(t) .

The corresponding geometrical configuration is illustrated in Fig. 1 in which the

potential f is chosen to be the Coulomb-plus-linear potential, f(r) = −1/r + r,

and the envelope basis h is, for the upper family, the harmonic-oscillator potential

0 1 2 3

r

-2

-1

0

1

2

f(r)  

Fig. 1. The “Coulomb-plus-linear” potential shape f(r) = −a/r+br represented as the envelope
curve of two distinct families of tangential potentials of the form αh(r) + β. In the upper family
h(r) = r2 is the harmonic-oscillator potential; in the lower family h(r) = −1/r is the Coulomb
potential. The adopted values of the relevant physical parameters a and b are a = 0.2 and b = 0.5.
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h(r) = r2 and, for the lower family, the Coulomb potential h(r) = −1/r. The

spectral function F (t) for the tangential potential f (t)(r) = a(t)h(r) + b(t) is given

by F (t)(v) = H(va(t)) + vb(t). If the transformation g(h) has definite convexity,

say g′′(h) > 0, then each tangential potential f (t)(r) lies beneath f(r) and, as a

consequence of the spectral comparison theorem, we know that each corresponding

tangential spectral function F (t)(v), and the envelope of this set, lie beneath F (v).

Similarly, in the case where g is concave, i.e. g′′(h) < 0, we obtain upper bounds to

F (v). These purely geometrical arguments, depending on the spectral comparison

theorem, extend easily to the excited states of the problem under consideration.

The spectral curves corresponding to the envelope representations for the potential

in Fig. 1 are shown in Fig. 2 for the excited state (n, `) = (2, 4). For comparison

0 1 2 3 4 5

v

0

2

4

6

8

10

12

14

F(v)  

E

Fig. 2. The spectral approximation corresponding to Fig. 1. Each “tangential” potential f(t)(r) =
αh(r)+β generates a corresponding tangential energy curve F (t)(v) = H(αv)+βv. The envelopes

of these spectral families generate upper and lower bounds to the exact curve E = F (v), shown
here for the case (n, `) = (2, 4).
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the exact curve E = F (v) is also shown in Fig. 2; this curve will be close to the

Coulomb envelope for large v and to the oscillator envelope for small v. Of course,

the envelopes of which we speak still have to be determined explicitly. Extensions of

this idea to completely new problems, such as simultaneous transformations of each

of a number of potential terms,14 the Dirac equation,15,16 or the spinless-Salpeter

problem of the present paper, are best formulated initially with the basic argument

outlined above.

In the one-term case the question arises as to whether there is a simple way

of determining the envelopes of the families of upper and lower spectral functions.

One effective solution of this problem is by the use of “kinetic potentials” which

were introduced12,13 precisely for this purpose. The idea is as follows. To each

spectral function Fn`(v) there is a corresponding “kinetic potential” (that is, a

minimum mean iso-kinetic potential) f̄n`(s). The relationship between Fn` and f̄n`
is invertible and is essentially that of a Legendre transformation:17 we can prove in

general that F is concave, f̄(s) is convex, and

F ′′(v)f̄ ′′(s) = − 1

v3
.

The explicit transformation formulas are as follows:

f̄n`(s) = F ′n`(v) , s = Fn`(v)− vF ′n`(v) (7)

and

Fn`(v)

v
= f̄n`(s)− sf̄ ′n`(s) ,

1

v
= −f̄ ′n`(s) . (8)

An a priori definition of the ground-state kinetic potential f̄10(s) = f̄(s) is

given by

f̄(s) = inf
ψ∈D(H)
(ψ,ψ)=1

(ψ,−∆ψ)=s

(ψ, fψ) ,

where D ⊂ L2(R3) is the domain of the Hamiltonian. The definition for the excited

states is a little more complicated13 and, in view of (7) and (8), will not be needed

in what follows.

What is crucial is that the spectral functions, either exact or approximate,

are recovered from the corresponding kinetic potentials by a minimization over

the kinetic-energy variable s. In this way the total minimization required by the

minimum–maximum principle9,11 has been divided into two steps: the first is con-

strained by (ψ,−∆ψ) = s and the second is a minimization over s. We have in all

cases:

Fn`(v) = min
s>0

[s+ vf̄n`(s)] .

Another form of this expression is possible for the kinetic potential is monotone

and allows us to change variables (s→ r) by f(r) = f̄n`(s). Thus we have

Fn`(v) = min
r>0

[
K

(f)
n` (r) + vf(r)

]
, K

(f)
n` = f̄−1

n` ◦ f . (9)
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The two corresponding expressions of the envelope approximation then become

f̄n`(s) ≈ g(h̄n`(s)) , or K
(f)
n` ≈ K

(h)
n` .

The second form (9) of the explicit expression for Fn`(v) isolates the potential shape

f itself and leads to an inversion sequence18 which reconstructs the potential from

a single given spectral function; but this is another story.19,20

It is useful here to provide the formulas for the kinetic potentials f̄ corresponding

to pure power-law potentials V (r) = v sgn(q)rq . Elementary scaling arguments for

the Hamiltonian

H = −∆ + v sgn(q)rq

show that the eigenvalues satisfy

Fn`(v) = v
2

2+qFn`(1) ,

where Fn`(1) = En`(q) are the eigenvalues of H with coupling v = 1, i.e. of −∆ +

sgn(q)rq . From Eq. (7) we immediately find that the kinetic potentials f̄n`(s) for

these potentials V (r) are given by

f̄n`(s) =
2

q

∣∣∣∣qEn`(q)2 + q

∣∣∣∣
2+q

2

s−
q
2 . (10)

Meanwhile the corresponding K-functions all have the same simple form21

K
(q)
n` (r) =

(
Pn`(q)

r

)2

,

where the P numbers are given by

Pn`(q) = |En`(q)|
2+q
2q

(
2

2 + q

) 1
q
∣∣∣∣ q

2 + q

∣∣∣∣ 1
2

, q 6= 0 .

Consequently, the power-law kinetic potentials (10) may be expressed in the

simple form

f̄n`(s) = sgn(q)

(
Pn`(q)√

s

)q
, q 6= 0 .

Some of the eigenvalues E, and thus the corresponding P numbers, are known

exactly from elementary quantum mechanics. From the known eigenvaluesE for the

Coulomb potential, En`(−1) = −[2(n+`)]−2, and the harmonic-oscillator potential,

En`(2) = 4n+ 2`− 1, we immediately obtain the corresponding P numbers:

Pn`(−1) = n+ ` ,

Pn`(2) = 2n+ `− 1

2
.

The case q = 0 corresponds exactly to the logarithmic potential;22,23 the P numbers

for the lowest states of the logarithmic and the linear potentials may be found in

Table 1.
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Table 1. Numerical values for the P num-

bers for the logarithmic potential (q = 0)
and the linear potential (q = 1) used in the
Schrödinger eigenvalue formula (11).

n ` Pn`(0) Pn`(1)

1 0 1.21867 1.37608

2 0 2.72065 3.18131

3 0 4.23356 4.99255

4 0 5.74962 6.80514

5 0 7.26708 8.61823

1 1 2.21348 2.37192

2 1 3.68538 4.15501

3 1 5.17774 5.95300

4 1 6.67936 7.75701

5 1 8.18607 9.56408

1 2 3.21149 3.37018

2 2 4.66860 5.14135

3 2 6.14672 6.92911

4 2 7.63639 8.72515

5 2 9.13319 10.52596

1 3 4.21044 4.36923

2 3 5.65879 6.13298

3 3 7.12686 7.91304

4 3 8.60714 9.70236

5 3 10.09555 11.49748

1 4 5.20980 5.36863

2 4 6.65235 7.12732

3 4 8.11305 8.90148

4 4 9.58587 10.68521

5 4 11.06725 12.47532

1 5 6.20936 6.36822

2 5 7.64780 8.12324

3 5 9.10288 9.89276

4 5 10.56970 11.67183

5 5 12.04517 13.45756

In summary, if the potential V (r) is a smooth transformation V (r) = g(sgn(q)rq)

of the pure power-law potential sgn(q)rq , then the eigenvalues of

H = −∆ + V (r)

are given approximately by the expression

En` ≈ min
r>0

[
P 2
n`(q)

r2
+ V (r)

]
. (11)

Here, a sign of approximate equality is used to indicate that, for a definite convexity

of g(h), Eq. (11) yields lower bounds for convex g (g′′ > 0) and upper bounds for
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concave g (g′′ < 0). The numbers Pn`(q) can be derived from the eigenvalues of the

operator −∆ + sgn(q)rq .

The lower bounds derived in the framework of envelope theory can be improved

by use of the refined comparison theorems of Ref. 24, which allow comparison

potentials to intersect; a detailed study of the latter approach is, however, beyond

the scope of the present analysis.

As an immediate application we consider the (nonrelativistic) Schrödinger

Hamiltonian (6) for the semirelativistic spinless-Salpeter harmonic-oscillator prob-

lem (1). Here we have

H = −v∆ + V (r) ,

with

V (r) = β
√
m2 + r2 ;

this potential is a convex transformation of a linear potential and a concave trans-

formation of a harmonic-oscillator potential. We conclude therefore from Eq. (11)

(see also Ref. 25):

min
r>0

[
v
P 2
n`(1)

r2
+ β

√
m2 + r2

]
≤ En`(v) ≤ min

r>0

[
v
P 2
n`(2)

r2
+ β

√
m2 + r2

]
, (12)

where the numbers Pn`(1) are given in Table 1 and Pn`(2) = 2n+`− 1
2 . By a simple

change of variables, r → r′ = P/r, we are able to recast the inequalities (12) into

the “preferred” form

En`(v) ≈ min
r>0

[
β

√
m2 +

P 2
n`

r2
+ V (r)

]
, V (r) = vr2 ,

in which the function to be minimized is simply the spinless-Salpeter Hamiltonian

with the momentum operator |p| replaced by P/r; the P numbers yielding upper

and lower bounds are as in Eq. (12). Interestingly, the upper and lower bounds in

Eq. (12) are equivalent to the corresponding bounds obtained in Ref. 8; however,

these earlier specific bounds were not derived as part of the general envelope theory.

If we approximate the square root from above again, by using the elementary

inequality √
m2 + r2 ≤ m+

r2

2m
,

we obtain from (12) the weaker upper bound

En`(v) ≤ βm+

√
βv

2m
(4n+ 2`− 1) ,

which is identical to that given by the general “Schrödinger upper bound”26,3,4

obtained by initially approximating the relativistic kinetic-energy operator above by

β
√
m2 + p2 ≤ β

(
m+

p2

2m

)
.
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The latter upper bound, and an improvement on it, will be discussed in the next

section.

4. Envelope Approximations for the Relativistic Kinetic Energy

The relativistic kinetic-energy operator T = β
√
m2 + p2 is a concave transforma-

tion of p2. Thus “tangent lines” to this operator all are of the form ap2 + b and

each one generates a Schrödinger operator that provides an upper bound to T . In

a given application with given parameter values, one can search for the best such

upper bound. By elementary analysis we can establish the operator inequality

H = β
√
m2 + p2 + V (r) ≤ β

2

(
−∆

µ
+ µ+

m2

µ

)
+ V (r) , (13)

where µ =
√
m2 + p2

1, and |p| = p1 is the “point of contact” of the tangent line

with the square-root function. The inequality (13) is identical to that obtained26

by employing the inequality (T − µ)2 ≥ 0. Optimization over µ for the Coulomb

case V (r) = −v/r recovers the explicit upper-bound formula of Ref. 26:

En`(v) ≤ mβ

√
1−

(
v

β(n+ `)

)2

.

In the case of the harmonic-oscillator potential, V (r) = vr2, we obtain the upper

bounds8

En`(v) ≤ min
µ>0

[√
βv

2µ
(4n+ 2`− 1) +

β

2

(
µ+

m2

µ

)]
.

(Brief reviews of analytical upper bounds on the energy eigenvalues of the spinless

Salpeter equation derived by combining operator inequalities with the minimum–

maximum principle may be found in Refs. 3, 4 and 27.)

The strategy of the present section is to regard the relativistic kinetic-energy

operator T as a concave function of p2, so that “tangent lines” generate “upper”

Schrödinger operators. This general approach leads to the same upper bounds as

those of Martin28 who used the particular square-root form of the relativistic kinetic

energy to construct an operator whose positivity yields the bounds.

5. Envelope Approximations for Salpeter Hamiltonians

5.1. The principal envelope formula

Let us now turn to our main topic and consider the spinless-Salpeter Hamiltonian

of Eq. (1),

H = β
√
m2 + p2 + V (r) ,

and its eigenvalues E. We shall assume that the potential V (r) is a smooth transfor-

mation V (r) = g(h(r)) of another potential h(r) and that g has definite convexity
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so that we obtain bounds to the energy eigenvalues E. We suppose that the “basis”

potential h(r) generates a “tangential” Salpeter problem

H = β
√
m2 + p2 + vh(r) ,

for which the eigenvalues e(v), or bounds to them, are known. We shall follow here

as closely as possible the development in Sec. 3 for the corresponding Schrödinger

problem.

First of all, we recall that the approximations or bounds to the energy eigen-

values of the relativistic Coulomb and harmonic-oscillator problems we shall even-

tually use from Secs. 2 and 3, when regarded as functions of the coupling v, are all

concave. Furthermore, it is easy to convince oneself that all the (unknown) energy

functions e(v) of the “tangential” Salpeter problem are concave, that is, e′′(v) < 0.

Suppose that the exact eigenvalue and (normalized) eigenvector for the problem

posed by the “tangential” Hamiltonian

H = β
√
m2 + p2 + vh(r)

are e(v) and ψ(v, r). Then, by differentiating the expectation value (ψ,Hψ) with

respect to the coupling v, we find

e′(v) = (ψ, hψ) .

If we now apply ψ(v, r) as a trial vector to estimate the energy of the operator

β
√
m2 + p2 + uh(r) ,

in which v has been replaced by u, we obtain an upper bound to the corresponding

energy function e(u) which may be written in the form

e(u) ≤ e(v) + (u− v)e′(v) .

This inequality tells us that the function e(u) lies beneath its tangents; that is to

say, e(u) is concave. Convexity properties of the energy functions of the correspond-

ing (nonrelativistic) Schrödinger problem have been investigated in Refs. 10, 12

and 11.

Next, in order to prove the main result of this section, the “principal envelope

formula,” we begin by using an envelope representation for the potential V (r) in the

Hamiltonian (1) and then demonstrate that all the spectral formulas that follow

possess a certain structure. Finally, as an application, we specialize to the case

of pure power-law “basis” potentials h(r) and, more particularly, to the Coulomb

potential and the harmonic-oscillator potential for which, at this time, we have

spectral information [cf. the discussions in Subsecs. 2.2 and 2.3, and the exact

bounds (12) on the energy levels En`(v) of the relativistic harmonic oscillator].

The tangential potentials we shall employ have the form V (t)(r) = a(t)h(r) +

b(t), where, as in the Schrödinger case, the coefficients a(t) and b(t) are given by

a(t) =
V ′(t)

h′(t)
= g′(h(t)) , b(t) = V (t)− a(t)h(t) = g(h(t))− g′(h(t))h(t) ,
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and r = t is the point of contact of the potential V (r) and its tangent V (t)(r). If,

for the sake of definiteness, we assume that V = g(h) with g concave (i.e. g′′ < 0),

we obtain a family of upper bounds given by

E ≤ ε(t) = e(a(t)) + b(t) .

The best of these is given by optimizing over t:

E ≤ ε(t̂) = e(a(t̂)) + b(t̂) ,

where t̂, the value of t which optimizes these bounds, is to be determined as the

solution of

e′(g′(h(t̂))) = h(t̂) .

In the spirit of the Legendre transformation17 we now consider another problem

which has the same solution; this second problem is the one that provides us with

our basic eigenvalue formula. We consider

E ≡ min
v>0

[e(v)− ve′(v) + g(e′(v))] ,

which is well defined since e(v) is concave. The solution has the critical point

v̂ = g′(e′(v̂)) .

If we now apply the correspondence h(t̂) = e′(v̂), it follows that the critical point v̂

becomes

v̂ = g′(h(t̂)) ,

and the tangential-potential coefficients a and b become

a(t̂) = g′(e′(v)) = v , b(t̂) = g(e′(v))− ve′(v) , v = v̂ . (14)

Meanwhile the original critical (energy) value is given by

ε(t̂) = e(a(t̂)) + b(t̂) = e(v)− ve′(v) + g(e′(v)) , v = v̂ .

Thus we conclude that the spectral approximation obtained by envelope methods

is given by the following “principal envelope formula”:

E ≈ E ≡ min
v>0

[e(v)− ve′(v) + g(e′(v))] . (15)

If g is concave (that is, g′′ < 0), then E ≤ E ; if g is convex (that is, g′′ > 0),

then E ≥ E . From the above considerations it follows immediately that, if the exact

energy function e(v) corresponding to the basis potential h is not available, then,

for g(h) concave, concave upper approximations eu(v) > e(v) or, for g(h) convex,

concave lower approximations el(v) < e(v) may be used instead of the exact energy

function e(v) in the principal envelope formula (15). Then all the lower tangents

will lie even lower and all the upper tangents will lie even higher. If g is convex,

we obtain a lower bound; if g is concave, we obtain an upper bound; because of

the concavity of e(v), this extremum is a minimum in both cases. If we wish to use
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numerical solutions to the “basis” problem (generated by h(r)), or if a completely

new energy-bound expression becomes available, the principal envelope formula

(15) is the relation that would at first be used.

Interestingly, in the formula (15) the tangential-potential apparatus is no longer

evident; only the correct convexity is required. As in the Schrödinger case,12 once

we have the basic result, the reformulation in terms of “kinetic potentials” is often

useful: the kinetic potential h̄(s) corresponding to some basis potential h(r) is given

by the Legendre transformation17

h̄(s) = e′(v) , s = e(v)− ve′(v) .

Meanwhile the envelope approximation has the kinetic-potential expression V̄ (s) ≈
g(h̄(s)).

For both the Coulomb lower bounds (3) or (5) and the harmonic-oscillator

upper bounds (12) which we have at present, we may express our general results in

a special common form which will now be derived.

5.2. The Coulomb lower bound

We consider first the Coulomb lower bound in which we assume that the poten-

tial V (r) is a convex transformation V (r) = g(h(r)) of the Coulomb potential

h(r) = −1/r. According to Subsec. 2.2, in this case all the “lower” el(v) have been

arranged — with the parameters β and m returned — in the form

el(v) = βm

√
1−

(
σv

β

)2

.

From this it follows by elementary algebra that if we define a new optimization

variable r by e′l(v) = h(r) = −1/r, we have

el(v)− ve′l(v) = β

√
m2 +

P 2

r2
, P ≡ 1

σ
.

Consequently, the lower bound on the energy eigenvalues E of the spinless Salpeter

equation becomes

E ≥ min
r>0

[
β

√
m2 +

P 2

r2
+ V (r)

]
, v < βvP . (16)

Here the boundary value vP of the Coulomb coupling v is given, when simply

determined by the requirement of boundedness from below of the operator (1), by

the critical coupling vc,

vP = vc =
2

π
,

and, when arising from the region of validity of our Coulomb-like family of lower

bounds (5), via P = 1/σ, by

vP = P
√

1− P 2 <
1

2
. (17)
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Table 2. Explicit values of some {P, vP } pairs,
obtained via the equality P = 1/σ either from
the Herbst lower bound (3) or the expression (5)
for our new lower bounds on the spectrum of the
spinless relativistic Coulomb problem (in three
spatial dimensions).

P vP

2

π

2

π

1√
2

1

2√
2

9− 3
√

5

1

3

1

2
√

2−
√

3

1

4

Some {P, vP } pairs may be found in Table 2; others can be easily generated from

the upper bound on the coupling v given in Eq. (17). The meaning of the Coulomb-

coupling constraint is a(t̂) < βvP , where a is the coefficient in the tangential

Coulomb potential given by (14).

As a rather trivial consistency check of our formalism, the Coulomb lower energy

bound of Eq. (16) may be applied to the Coulomb potential V (r) = −v/r in order

to re-derive, for P = 2/π, the Herbst formula (3) — which is nothing else but the

starting point of the present “lower-bound” considerations.

5.3. The harmonic-oscillator upper bounds

Next, let us turn to the harmonic-oscillator upper bounds. Our main assumption is

here that V (r) = g(r2), with g′′ < 0. In this case the only difficulty is that the basis

problem h(r) = r2 is equivalent to a Schrödinger problem whose solution En`(v) is

not known exactly. Following the discussion of suitable bounds after the proof of

the principal envelope formula, Eq. (15), let us call the upper bound provided by

Eq. (12) eu(v), and let us introduce the shorthand notation Pn`(2) = 2n+`− 1
2 = P .

Then we have the following parametric equations for eu(v):

eu(v) = v
P 2

r2
+ β

√
m2 + r2 , v =

βr4

2P 2
√
m2 + r2

, e′u(v) =
P 2

r2
.

By substituting these expressions into the fundamental envelope formula (15) we

obtain the following upper bound on all the eigenvalues of the spinless-Salpeter

problem with potential V (r) = g(r2) and g′′ < 0:

En` ≤ min
r>0

[
β

√
m2 +

P 2

r2
+ V (r)

]
, P = Pn`(2) = 2n+ `− 1

2
. (18)
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6. The Coulomb-Plus-Linear (or “Funnel”) Potential

In order to illustrate the above results by a physically motivated example, let us

apply these considerations to the Coulomb-plus-linear or (in view of its shape)

“funnel” potential

V (r) = −c1
r

+ c2r , c1 ≥ 0 , c2 ≥ 0 .

(This potential provides a reasonable overall description of the strong interactions

of quarks in hadrons. For the phenomenological description of hadrons in terms of

both nonrelativistic and semirelativistic potential models, see, e.g. Refs. 29 and 30.)

By choosing as basis potential the Coulomb potential h(r) = −1/r, we may write

V (r) = g(h(r)) with

g(h) = c1h−
c2

h
,

which is clearly a convex function of h < 0: g′′ > 0. Thus the convexity condition

is satisfied. However, we are not free to choose the coupling constants c1 and c2 as

large as we please. It is immediately obvious that, for a particular {P, vP } pair, we

must in any case have c1 < βvP . For the full problem the coefficient c2 of the linear

term will also be involved. The coupling v we are concerned about is given by (14).

We have

v = g′(e′(v)) =
βP 2

r

√
m2 +

(
P
r

)2
= c1 +

c2

h2
= c1 + c2r

2 .

From this we obtain, for given values of the parameters m and β and for a given

{P, vP } pair, as a sufficient condition for v < βvP the “Coulomb coupling constant

constraint” on the two coupling strengths c1 and c2 in the funnel potential:

c1 +
P 2

m2

(
P 2

v2
P

− 1

)
c2 < βvP . (19)

In the case {P = 1/
√

2, vP = 1/2} and β = m = 1 this condition reduces to

c1 + 1
2c2 < 1

2 . For Herbst’s lower bound (3), i.e. P = vP = vc = 2/π, this con-

straint clearly yields c1 < βvP . There is no escaping this feature of all energy

bounds involving the Coulomb potential: the constraint derives from the funda-

mental observation that the Coulomb coupling v must not be too large, so that

the (relativistic) kinetic energy is able to counterbalance the Coulomb potential in

order to maintain the Hamiltonian (1) with V (r) = −v/r bounded from below.

For example, if we seek the largest allowed value of the parameter P by solving

Eqs. (17) and (19) together, we find that this largest P is given by

c2 sin4 t

cos2 t(β sin t cos t− c1)
= m2 , P ≡ sin t . (20)
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For the Coulomb-plus-linear potential V (r) = −c1/r+ c2r under consideration,

Fig. 3 shows the lower and upper bounds on the lowest energy eigenvalue E of the

spinless Salpeter equation, given by the envelopes of the lower and upper families of

tangential energy curves (16) and (18), as functions E(m) of the mass m entering

in the semirelativistic Hamiltonian. In the case of the Coulomb lower bound (16),

we have employed for each m the best possible P (m) provided by (20). As m→ 0,

the “basis” Coulomb problem H = β
√
m2 + p2 − v/r has energy e(m) → 0; thus

the Coulomb lower bound for a non-Coulomb problem becomes very weak for small

values of m. Of course, Eq. (18) provides us with rigorous upper bounds for every

energy level.

In order to get an idea of the location of the exact energy eigenvalues E, Fig. 3

also shows the ground-state energy curve E(m) obtained by the Rayleigh–Ritz

0 1 2 3 4 5

m

0

1

2

3

4

5

6

E(m)  

L

U

E

Fig. 3. Lower bounds (L), according to (16), and upper bounds (U), according to (18), on the
energy eigenvalue E of the ground state [(n, `) = (1, 0)] of the spinless Salpeter equation with a
Coulomb-plus-linear potential V (r) = −c1/r + c2r, for β = 1, c1 = 0.1, and c2 = 0.25. The lower
bound is given by the general result (16) with the “best” P (m) provided by (20). In order to

satisfy the Coulomb coupling constraint (20), the mass m must fulfill m >
√

5/4. For comparison,
a (very accurate) Rayleigh–Ritz variational upper bound E is depicted too.



May 21, 2002 16:16 WSPC/139-IJMPA 01052

Discrete Spectra of Semirelativistic Hamiltonians 1949

variational technique9 with the Laguerre basis states for the trial space defined in

Ref. 31. Strictly speaking, this energy curve represents only an upper bound to the

precise eigenvalue E. However, from the findings of Ref. 31 the deviations of these

Laguerre bounds from the exact eigenvalues may be estimated, for the superposition

of 25 basis functions used here, to be of the order of 1%.

Figure 4 shows, for a Coulomb-plus-linear potential of the form V (r) = v(−a/
r + br), the lower and upper bounds on the lowest energy eigenvalue E of the

spinless Salpeter equation, given by the envelopes of the lower and upper families

of tangential energy curves (16) and (18), as functions E(v) of the “overall” coupling

parameter v which multiplies the potential shape−a/r+br. Again we compare these

bounds with the ground-state energy curve E(v), obtained by the Rayleigh–Ritz

variational technique9 with the Laguerre basis states.31

0 0.2 0.4 0.6 0.8 1

v

0.8

1

1.2

1.4

1.6

1.8

2

2.2

E(v)  

L

U

E

Fig. 4. Lower bounds (L), according to (16), and upper bounds (U), according to (18), on the
energy eigenvalue E of the ground state [(n, `) = (1, 0)] of the spinless Salpeter equation with
Coulomb-plus-linear potential V (r) = v(−a/r + br), for a = 0.2, b = 0.5, m = β = 1. The lower
bound is given by the general result (16) with P (m = 1) computed from Eq. (20), evaluated for

mass m = 1 and the funnel-potential coupling strengths c1 = va and c2 = vb. For comparison, a
(very accurate) Rayleigh–Ritz variational upper bound E is depicted too.
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7. Summary and Conclusion

In this analysis we have studied the discrete spectrum of semirelativistic “spinless-

Salpeter” Hamiltonians H, defined in Eq. (1), by an approach which is based prin-

cipally on convexity. We have at our disposal very definite information concerning,

on the one hand, the bottom of the spectrum of H for the Coulomb potential,

h(r) = −1/r, and, on the other hand, the entire spectrum of H for the harmonic-

oscillator potential, h(r) = r2. The class of potentials that are at the same time a

convex transformation of −1/r and a concave transformation of r2 includes, for ex-

ample, arbitrary linear combinations of Coulomb, logarithmic, linear, and harmonic-

oscillator terms. In order to obtain information about the eigenvalues E of H for

arbitrary members within this class of potentials, we have extended the — for non-

relativistic Schrödinger operators well-established — formalism of envelope theory

to Hamiltonians with relativistic kinetic energies. The envelope technique applied

here takes advantage of the fact that all “tangent lines” to the interaction potential

V (r) = g(h(r)) in H are potentials of the form ah(r)+b, and that, by convexity and

the comparison theorem recalled in Subsec. 2.4, the energy eigenvalues correspond-

ing to these “tangent” potentials provide rigorous bounds to the unknown exact

eigenvalues E of H. If e(v) denotes the energy function — or a suitable bound to

it — corresponding to the problem posed by a “basis” potential vh(r), where v is

a positive coupling parameter, the envelopes of upper and lower families of energy

curves may be found with the help of the “principal envelope formula”

E ≈ min
v>0

[e(v)− ve′(v) + g(e′(v))] .

Here, a sign of approximate equality is used to indicate that, for a definite con-

vexity of g(h), the envelope theory yields lower bounds for convex g(h) and upper

bounds for concave g(h). With the above principal envelope formula at hand, all

new spectral pairs {h(r), e(v)} which may become available at some future time

can immediately be used to enrich our collection of energy bounds. If the basis

potential h(r) is a pure power, these bounds can be written as

En` ≈ min
r>0

[
β

√
m2 +

P 2
n`

r2
+ V (r)

]
,

where the numbers Pn` are obtained from the corresponding underlying basis prob-

lems. The power of this technique is illustrated, in Sec. 6, by our application to the

“funnel” potential, V (r) = −c1/r + c2r. For this problem, we have employed both

the semirelativistic Coulomb and harmonic-oscillator problems to calculate, respec-

tively, lower and upper bounds on the energy eigenvalues of the spinless Salpeter

equation.

We expect that such results would provide bounds on the energy eigenvalues

for general theoretical discussions, or be used as guides for more tightly focussed

analytic or numerical studies of the spectra of semirelativistic “spinless-Salpeter”

Hamiltonians.
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